Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

101. Let $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 3} \right| + \left| {x - 4} \right|$$       and $$g\left( x \right) = f\left( {x + 1} \right).$$    Then :

A $$g\left( x \right)$$  is an even function
B $$g\left( x \right)$$  is an odd function
C $$g\left( x \right)$$  is neither even nor odd
D $$g\left( x \right)$$  is periodic
Answer :   $$g\left( x \right)$$  is neither even nor odd

102. The largest set of real values of $$x$$ for which $$f\left( x \right) = \sqrt {\left( {x + 2} \right)\left( {5 - x} \right)} - \frac{1}{{\sqrt {{x^2} - 4} }}$$        is a real function is :

A $$\left[ {1,\,2} \right) \cup \left( {2,\,5} \right]$$
B $$\left( {2,\,5} \right]$$
C $$\left[ {3,\,4} \right]$$
D none of these
Answer :   $$\left( {2,\,5} \right]$$

103. Let $$f:\left( { - 1,1} \right) \to B,$$     be a function by $$f\left( x \right) = {\tan ^{ - 1}}\frac{{2x}}{{1 - {x^2}}},$$    then $$f$$ is both one-one and onto when $$B$$ is the interval

A $$\left( {0,\frac{\pi }{2}} \right)$$
B $$\left[ {0,\left. {\frac{\pi }{2}} \right)} \right.$$
C $$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$$
D $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
Answer :   $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$

104. Let $$f$$ be a function on $${\bf{R}}$$ given by $$f\left( x \right) = {x^2}$$   and let
$$E = \left\{ {x\, \in \,{\bf{R}}: - 1 \leqslant x \leqslant 0} \right\}$$      and
$$F = \left\{ {x\, \in \,{\bf{R}}:0 \leqslant x \leqslant 1} \right\}$$
then which of the following is false ?

A $$f\left( E \right) = f\left( F \right)$$
B $$E \cap F \subset f\left( E \right) \cap f\left( F \right)$$
C $$E \cup F \subset f\left( E \right) \cup f\left( F \right)$$
D $$f\left( {E \cap F} \right) = \left\{ 0 \right\}$$
Answer :   $$E \cup F \subset f\left( E \right) \cup f\left( F \right)$$

105. Let $${\text{ }}f\left( x \right) = {x^2}$$   and $$g\left( x \right) = \sin x$$   for all $$x \in R.$$  Then the set of all $$x$$ satisfying $$\left( {fogogof} \right)\left( x \right) = \left( {gogof} \right)\left( x \right),$$     where $$\left( {fog} \right)\left( x \right) = f\left( {g\left( x \right)} \right),$$     is

A $$ \pm \sqrt {n\pi } ,n \in \left\{ {0,1,2,....} \right\}$$
B $$ \pm \sqrt {n\pi } ,n \in \left\{ {1,2,....} \right\}$$
C $$\frac{\pi }{2} + 2n\pi ,n \in \left\{ {... - 2, - 1,0,1,2....} \right\}$$
D $$2n\pi ,n \in \left\{ {... - 2, - 1,0,1,2....} \right\}$$
Answer :   $$ \pm \sqrt {n\pi } ,n \in \left\{ {0,1,2,....} \right\}$$

106. If $$\left[ \cdot \right]$$ denotes the greatest integer function then the domain of the real valued function $${\log _{\left[ {x + \frac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|$$     is :

A $$\left[ {\frac{3}{2},\, + \infty } \right)$$
B $$\left[ {\frac{3}{2},\,2} \right) \cup \left( {2,\, + \infty } \right)$$
C $$\left( {\frac{1}{2},\,2} \right) \cup \left( {2,\, + \infty } \right)$$
D none of these
Answer :   $$\left[ {\frac{3}{2},\,2} \right) \cup \left( {2,\, + \infty } \right)$$

107. Let $$f\left( x \right) = {\cos ^{ - 1}}\left( {\frac{{{x^2}}}{{1 + {x^2}}}} \right).$$     The range of $$f$$ is :

A $$\left[ {0,\,\frac{\pi }{2}} \right]$$
B $$\left[ { - \frac{\pi }{2},\,\frac{\pi }{2}} \right]$$
C $$\left[ { - \frac{\pi }{2},\,0} \right]$$
D none of these
Answer :   none of these

108. Let $$f$$ be a function satisfying $$f\left( {x + y} \right) = f\left( x \right) \cdot f\left( y \right)$$     for all $$x,\,y\, \in \,R.$$   If $$f\left( 1 \right) = 3$$   then $$\sum\limits_{r = 1}^n {f\left( r \right)} $$   is equal to :

A $$\frac{3}{2}\left( {{3^n} - 1} \right)$$
B $$\frac{3}{2}n\left( {n + 1} \right)$$
C $${3^{n + 1}} - 3$$
D none of these
Answer :   $$\frac{3}{2}\left( {{3^n} - 1} \right)$$

109. Suppose $$f\left( x \right) = {\left( {x + 1} \right)^2}$$     for $$x \geqslant - 1.$$   If $$g\left( x \right)$$  is the function whose graph is the reflection of the graph of $$f\left( x \right)$$  with respect to the line $$y = x,$$  then $$g\left( x \right)$$ equals

A $$ - \sqrt {x - 1} ,x \geqslant 0$$
B $$\frac{1}{{{{\left( {x + 1} \right)}^2}}},x > - 1$$
C $$\sqrt {x + 1} ,x \geqslant - 1$$
D $$\sqrt {x - 1} ,x \geqslant 0$$
Answer :   $$\sqrt {x - 1} ,x \geqslant 0$$

110. Domain of definition of the function $$f\left( x \right) = \frac{3}{{4 - {x^2}}} + {\log _{10}}\left( {{x^3} - x} \right),$$       is :

A $$\left( { - 1,\,0} \right) \cup \left( {1,\,2} \right) \cup \left( {2,\,\infty } \right)$$
B $$\left( {a,\,2} \right)$$
C $$\left( { - 1,\,0} \right) \cup \left( {a,\,2} \right)$$
D $$\left( {1,\,2} \right) \cup \left( {2,\,\infty } \right)$$
Answer :   $$\left( { - 1,\,0} \right) \cup \left( {1,\,2} \right) \cup \left( {2,\,\infty } \right)$$