Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

161. Which of the following functions is even ?

A $$f\left( x \right) = \sqrt {1 + x + {x^2}} - \sqrt {1 - x + {x^2}} $$
B $$f\left( x \right) = \log \left( {\frac{{1 - x}}{{1 + x}}} \right)$$
C $$f\left( x \right) = \log \left( {x + \sqrt {1 + {x^2}} } \right)$$
D $$f\left( x \right) = \frac{{{e^x} + {e^{ - x}}}}{2}$$
Answer :   $$f\left( x \right) = \frac{{{e^x} + {e^{ - x}}}}{2}$$

162. If $$3f\left( x \right) - f\left( {\frac{1}{x}} \right) = \log \,{x^4},$$       then $$f\left( {{e^{ - x}}} \right)$$  is :

A $$1 + x$$
B $$\frac{1}{x}$$
C $$x$$
D $$ - x$$
Answer :   $$ - x$$

163. The domain of two definition of the function $$f\left( x \right)$$  is given by the equation $${2^x} + {2^y} = 2$$   is :

A $$0 < x \leqslant 1$$
B $$0 \leqslant x \leqslant 1$$
C $$ - \infty < x \leqslant 0$$
D $$ - \infty < x < 1$$
Answer :   $$ - \infty < x < 1$$

164. If $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) - xy - 1$$       for all $$x,\,y,$$  and $$f\left( 1 \right) = 1$$   then the number of solutions of $$f\left( n \right) = n,\,n\, \in \,N,$$     is :

A one
B two
C four
D none of these
Answer :   one

165. Let $$f\left( x \right) = \frac{{\alpha x}}{{x + 1}},x \ne - 1.$$     Then, for what value of $$\alpha $$ is $$f\left( {f\left( x \right)} \right) = x?$$

A $$\sqrt 2 $$
B $$ - \sqrt 2 $$
C 1
D -1
Answer :   -1

166. Let $$f\left( x \right) = \frac{x}{{{{\left( {1 + {x^n}} \right)}^{\frac{1}{n}}}}}$$     for $$n \geqslant 2$$  and $$g\left( x \right) = \underbrace {\left( {fofo...of} \right)}_{f\,{\text{occurs}}\,n\,{\text{times}}}\,\left( x \right).$$      Then $$\int {{x^{n - 2}}g\left( x \right)dx} $$    equals.

A $$\frac{1}{{n\left( {n - 1} \right)}}{\left( {1 + n{x^n}} \right)^{1 - \frac{1}{n}}} + K$$
B $$\frac{1}{{n - 1}}{\left( {1 + n{x^n}} \right)^{1 - \frac{1}{n}}} + K$$
C $$\frac{1}{{n\left( {n + 1} \right)}}{\left( {1 + n{x^n}} \right)^{1 + \frac{1}{n}}} + K$$
D $$\frac{1}{{n + 1}}{\left( {1 + n{x^n}} \right)^{1 + \frac{1}{n}}} + K$$
Answer :   $$\frac{1}{{n\left( {n - 1} \right)}}{\left( {1 + n{x^n}} \right)^{1 - \frac{1}{n}}} + K$$

167. The domain of the function $$f\left( x \right) = \sqrt {1 - \sqrt {1 - \sqrt {1 - {x^2}} } } $$       is :

A $$\left\{ {x|x < 1} \right\}$$
B $$\left\{ {x|x > - 1} \right\}$$
C $$\left[ {0,\,1} \right]$$
D $$\left[ { - 1,\,1} \right]$$
Answer :   $$\left[ { - 1,\,1} \right]$$

168. The domain of the function $$f\left( x \right) = \sqrt {{x^{14}} - {x^{11}} + {x^6} - {x^3} + {x^2} + 1} $$         is :

A $$\left( { - \infty ,\,\infty } \right)$$
B $$\left[ {0,\,\infty } \right)$$
C $$\left( { - \infty ,\,0} \right]$$
D $$\frac{R}{{\left[ {0,\,1} \right]}}$$
Answer :   $$\left( { - \infty ,\,\infty } \right)$$

169. Let $$f\left( x \right)$$  be defined on $$\left[ { - 2,\,2} \right]$$  and given by \[f\left( x \right) = \left\{ \begin{array}{l} \,\, - 1,\,\,\,\,\,\, - 2 \le x \le 0\\ x - 1,\,\,\,\,\,0 \le x \le 2 \end{array} \right.\]       then $$f\left( {\left| x \right|} \right)$$  is defined as :

A \[f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l} \,\,\,\,1,\,\,\,\,\,\,\, - 2 \le x \le 0\\ 1 - x,\,\,\,\,0 < x \le 2 \end{array} \right.\]
B \[f\left( {\left| x \right|} \right) = x - 1\,\forall \,x\, \in \,R\]
C \[f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l} - x - 1,\,\,\,\, - 2 \le x \le 0\\ \,\,\,x - 1,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]
D none of these
Answer :   \[f\left( {\left| x \right|} \right) = \left\{ \begin{array}{l} - x - 1,\,\,\,\, - 2 \le x \le 0\\ \,\,\,x - 1,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]

170. The range of the function $$f\left( x \right) = {x^2} + 2x + 2$$     is :

A $$\left( {1,\,\infty } \right)$$
B $$\left( {2,\,\infty } \right)$$
C $$\left( {0,\,\infty } \right)$$
D $$\left[ {1,\,\infty } \right)$$
Answer :   $$\left[ {1,\,\infty } \right)$$