3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

161. The vectors $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   and $$\overrightarrow d $$ are such that $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d $$    and $$\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d .$$    Which of the following is/are correct ?
$$\eqalign{ & 1.\,\left( {\overrightarrow a - \overrightarrow d } \right) \times \left( {\overrightarrow b - \overrightarrow c } \right) = \overrightarrow 0 \cr & 2.\,\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow c \times \overrightarrow d } \right) = \overrightarrow 0 \cr} $$
Select the correct answer using the code given below :

A $$1$$ only
B $$2$$ only
C Both $$1$$ and $$2$$
D Neither $$1$$ nor $$2$$
Answer :   Both $$1$$ and $$2$$

162. $$P$$ is a point on the $$y$$–$$z$$ plane, making equal angles with the $$y$$-axis and $$z$$-axis and at a distance $$2$$ from the origin. $$M$$ is the foot of the perpendicular from $$P$$ to the plane $$3x + y - \sqrt 2 z = 2\sqrt 2 .$$     The coordinates of $$M$$ are :

A $$\left( {1,\,\frac{5}{3},\,\frac{{\sqrt 2 }}{3}} \right)$$
B $$\left( {1,\, - 3,\, - 2} \right)$$
C $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{5}{{3\sqrt 2 }},\,\frac{1}{3}} \right)$$
D none of these
Answer :   none of these

163. If the points $$A\left( {1,\,2,\, - 1} \right),\,B\left( {2,\,6,\,2} \right)$$     and $$C\left( {\lambda ,\, - 2,\, - 4} \right)$$   are collinear then $$\lambda $$ is :

A $$0$$
B $$2$$
C $$ - 2$$
D $$1$$
Answer :   $$0$$

164. If $$\left( {\vec a \times \vec b} \right) \times \vec c = \vec a \times \left( {\vec b \times \vec c} \right)$$     where $$\vec a,\,\vec b$$  and $${\vec c}$$ are any three vectors such that $$\vec a.\vec b \ne 0,\,\vec b.\vec c \ne 0$$     then $${\vec a}$$ and $${\vec c}$$ are :

A inclined at an angle of $$\frac{\pi }{3}$$ between them
B inclined at an angle of $$\frac{\pi }{6}$$ between them
C perpendicular
D parallel
Answer :   parallel

165. Let $$a,\,b,\,c$$   be distinct non-negative numbers. If the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$    and $$c\hat i + c\hat j + b\hat k$$   lie in a plane, then $$c$$ is :

A the Arithmetic Mean of $$a$$ and $$b$$
B the Geometric Mean of $$a$$ and $$b$$
C the harmonic Mean of $$a$$ and $$b$$
D equal to zero
Answer :   the Geometric Mean of $$a$$ and $$b$$

166. Let $$\overrightarrow {OA} = \overrightarrow a ,\,\overrightarrow {OB} = 10\overrightarrow a + 2\overrightarrow b $$       and $$\overrightarrow {OC} = \overrightarrow b ,$$   where $$O,\,A$$  and $$C$$ are noncollinear points. Let $$p$$ denote the area of the quadrilateral $$OABC,$$   and $$q$$ denote the area of the parallelogram with $$OA$$  and $$OC$$  as adjacent sides. Then $$\frac{p}{q}$$ is equal to :

A $$4$$
B $$6$$
C $$\frac{1}{2}\frac{{\left| {\overrightarrow a - \overrightarrow b } \right|}}{{\left| {\overrightarrow a } \right|}}$$
D none of these
Answer :   $$6$$

167. If $${\hat u}$$ and $${\hat v}$$ are unit vectors and $$\theta $$ is the acute angle between them, then $$2\hat u \times 3\hat v$$   is a unit vector for :

A no value of $$\theta $$
B exactly one value of $$\theta $$
C exactly two values of $$\theta $$
D more than two values of $$\theta $$
Answer :   exactly one value of $$\theta $$

168. If $$a,\,b,\,c$$  are the $${p^{th}},\,{q^{th}},\,{r^{th}}$$   terms of an HP and $$\overrightarrow u = \left( {q - r} \right)\overrightarrow i + \left( {r - p} \right)\overrightarrow j + \left( {p - q} \right)\overrightarrow k ,\,\overrightarrow v = \frac{{\overrightarrow i }}{a} + \frac{{\overrightarrow j }}{b} + \frac{{\overrightarrow k }}{c},$$             then :

A $$\overrightarrow u ,\,\overrightarrow v $$  are parallel vectors
B $$\overrightarrow u ,\,\overrightarrow v $$  are orthogonal vectors
C $$\overrightarrow u .\overrightarrow v = 1$$
D $$\overrightarrow u \times \overrightarrow v = \overrightarrow i + \overrightarrow j + \overrightarrow k $$
Answer :   $$\overrightarrow u ,\,\overrightarrow v $$  are orthogonal vectors

169. A vector $$\overrightarrow a = \left( {x,\,y,\,z} \right)$$    of length $$2\sqrt 3 $$  which makes equal angles with the vectors $$\overrightarrow b = \left( {y,\, - 2z,\,3x} \right)$$    and $$\overrightarrow c = \left( {2z,\,3x,\, - y} \right)$$    and is perpendicular to $$\overrightarrow d = \left( {1,\, - 1,\,2} \right)$$    and makes an obtuse angle with $$y$$-axis is :

A $$\left( { - 2,\,2,\,2} \right)$$
B $$\left( {1,\,1,\,\sqrt {10} } \right)$$
C $$\left( {2,\, - 2,\, - 2} \right)$$
D none of these
Answer :   $$\left( {2,\, - 2,\, - 2} \right)$$

170. The projection of the vector $$\overrightarrow i + \overrightarrow j + \overrightarrow k $$   on the line whose vector equation is $$\overrightarrow r = \left( {3 + t} \right)\overrightarrow i + \left( {2t - 1} \right)\overrightarrow j + 3t\overrightarrow k ,\,t$$         being the scalar parameter, is :

A $$\frac{1}{{\sqrt {14} }}$$
B $$6$$
C $$\frac{6}{{\sqrt {14} }}$$
D none of these
Answer :   $$\frac{6}{{\sqrt {14} }}$$