Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

11. The equation $${\tan ^{ - 1}}\left( {1 + x} \right) + {\tan ^{ - 1}}\left( {1 - x} \right) = \frac{\pi }{2}$$       is satisfied by

A $$x = 1$$
B $$x = - 1$$
C $$x = 0$$
D $$x = \frac{1}{2}$$
Answer :   $$x = 0$$

12. Let $$x \in \left( {0,1} \right).$$   The set of all $$x$$ such that $${\sin ^{ - 1}}x > {\cos ^{ - 1}}x,$$    is the interval :

A $$\left( {\frac{1}{2},\frac{1}{{\sqrt 2 }}} \right)$$
B $$\left( {\frac{1}{{\sqrt 2 }},1} \right)$$
C $$\left( {0,1} \right)$$
D $$\left( {0,\frac{{\sqrt 3 }}{2}} \right)$$
Answer :   $$\left( {\frac{1}{{\sqrt 2 }},1} \right)$$

13. $$\tan \left\{ {\frac{1}{2}{{\sin }^{ - 1}}\frac{{2x}}{{1 + {x^2}}} + \frac{1}{2}{{\cos }^{ - 1}}\frac{{1 - {y^2}}}{{1 + {y^2}}}} \right\} = $$

A $$\frac{{x - y}}{{1 + xy}}$$
B $$\frac{{x + y}}{{1 - xy}}$$
C $$\frac{{x - y}}{{x + y}}$$
D $$\frac{{1 - xy}}{{1 + xy}}$$
Answer :   $$\frac{{x + y}}{{1 - xy}}$$

14. If $${\cos ^{ - 1}}x + {\cos ^{ - 1}}y + {\cos ^{ - 1}}z = \pi ,{\text{ then}}$$

A $${x^2} + {y^2} + {z^2} + xyz = 0$$
B $${x^2} + {y^2} + {z^2} + 2xyz = 0$$
C $${x^2} + {y^2} + {z^2} + xyz = 1$$
D $${x^2} + {y^2} + {z^2} + 2xyz = 1$$
Answer :   $${x^2} + {y^2} + {z^2} + 2xyz = 1$$

15. The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A $$\frac{6}{{17}}$$
B $$\frac{7}{{16}}$$
C $$\frac{16}{{7}}$$
D none
Answer :   none

16. If $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {\frac{{\sqrt 3 }}{2}x - \frac{1}{2}\sqrt {1 - {x^2}} } \right\}, - \frac{1}{2} \leqslant x \leqslant 1,$$          then $$f\left( x \right)$$  is equal to

A $${\sin^{ - 1}}\frac{1}{2} - {\sin ^{ - 1}}x$$
B $${\sin ^{ - 1}}x - \frac{\pi }{6}$$
C $${\sin ^{ - 1}}x + \frac{\pi }{6}$$
D None of these
Answer :   $${\sin ^{ - 1}}x - \frac{\pi }{6}$$

17. If $$x, y, z$$  are in A.P. and $${\tan ^{ - 1}}x,{\tan ^{ - 1}}y\,\,{\text{and}}\,{\tan ^{ - 1}}z$$      are also in A.P., then

A $$x = y = z$$
B $$2x = 3y = 6z$$
C $$6x = 3y = 2z$$
D $$6x = 4y = 3z$$
Answer :   $$x = y = z$$

18. The formula $$2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$$      holds for

A $$x \in \left[ {0,1} \right]$$
B $$x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]$$
C $$x \in \left( { - 1,0} \right)$$
D $$x \in \left[ { - \frac{{\sqrt 3 }}{2},\frac{{\sqrt 3 }}{2}} \right]$$
Answer :   $$x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]$$

19. In a triangle $$ABC,$$  if $$A = {\tan ^{ - 1}}2$$   and $$B = {\tan ^{ - 1}}3,$$   then $$C$$ is equal to

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{6}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{4}$$

20. The solution set of the equation $${\sin ^{ - 1}}x = 2\,{\tan ^{ - 1}}x{\text{ is}}$$

A $$\left\{ { 1,2} \right\}$$
B $$\left\{ { - 1,2} \right\}$$
C $$\left\{ { - 1,1,0} \right\}$$
D $$\left\{ {1,\frac{1}{2},0} \right\}$$
Answer :   $$\left\{ { - 1,1,0} \right\}$$