Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths
Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
The equation $${\tan ^{ - 1}}\left( {1 + x} \right) + {\tan ^{ - 1}}\left( {1 - x} \right) = \frac{\pi }{2}$$ is satisfied by
16.
If $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {\frac{{\sqrt 3 }}{2}x - \frac{1}{2}\sqrt {1 - {x^2}} } \right\}, - \frac{1}{2} \leqslant x \leqslant 1,$$ then $$f\left( x \right)$$ is equal to
A
$${\sin^{ - 1}}\frac{1}{2} - {\sin ^{ - 1}}x$$
B
$${\sin ^{ - 1}}x - \frac{\pi }{6}$$
C
$${\sin ^{ - 1}}x + \frac{\pi }{6}$$
D
None of these
Answer :
$${\sin ^{ - 1}}x - \frac{\pi }{6}$$
Let $$x = \sin \theta .$$ Then $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {\sin \left( {\theta - \frac{\pi }{6}} \right)} \right\}.$$
$$\eqalign{
& - \frac{1}{2} \leqslant x \leqslant 1 \cr
& \Rightarrow \,\, - \frac{1}{2} \leqslant \sin \theta \leqslant 1 \cr
& \Rightarrow \,\, - \frac{\pi }{6} \leqslant \theta \leqslant \frac{\pi }{2}. \cr} $$
So, $$\theta - \frac{\pi }{6}$$ is in the fourth or the first quadrant. Hence, $$f\left( x \right) = \theta - \frac{\pi }{6}.$$
17.
If $$x, y, z$$ are in A.P. and $${\tan ^{ - 1}}x,{\tan ^{ - 1}}y\,\,{\text{and}}\,{\tan ^{ - 1}}z$$ are also in A.P., then
A
$$x = y = z$$
B
$$2x = 3y = 6z$$
C
$$6x = 3y = 2z$$
D
$$6x = 4y = 3z$$
Answer :
$$x = y = z$$
Since, $$x, y, z$$ are in A.P.
⇒ $$2y = x + z$$
Also, we have, $$2\,{\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( z \right)$$
$$\eqalign{
& \Rightarrow {\tan ^{ - 1}}\left( {\frac{{2y}}{{1 - {y^2}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{x + z}}{{1 - xz}}} \right) \cr
& \Rightarrow \,\,\frac{{x + z}}{{1 - {y^2}}} = \frac{{x + z}}{{1 - xz}}\,\,\left( {\because \,\,2y = x + z} \right) \cr
& \Rightarrow \,\,{y^2} = xz\,\,\,{\text{or }}\,x + z = 0 \cr
& \Rightarrow \,\,x = y = z \cr} $$
18.
The formula $$2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$$ holds for