41.
What is the value of $$x$$ that satisfies the equation $${\cos ^{ - 1}}x = 2\,{\sin ^{ - 1}}x\,?$$
A
$$\frac{1}{2}$$
B
$$ - 1$$
C
$$1$$
D
$$ - \frac{1}{2}$$
Answer :
$$\frac{1}{2}$$
View Solution
$$\eqalign{
& {\text{Given that, }}{\cos ^{ - 1}}x = 2\,{\sin ^{ - 1}}x \cr
& \Rightarrow \frac{\pi }{2} - {\sin ^{ - 1}}x = 2\,{\sin ^{ - 1}}x \cr
& \Rightarrow \frac{\pi }{2} = 3\,{\sin ^{ - 1}}x \cr
& \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{6} \cr
& {\text{So}},x = \sin \frac{\pi }{6} = \frac{1}{2} \cr} $$
42.
If $${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \frac{\pi }{2}$$ and $${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = 0,$$ then values $$x$$ and $$y$$ are respectively
A
$$\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}$$
B
$$\frac{1}{2}, \frac{1}{2}$$
C
$$\frac{1}{2}, - \frac{1}{2}$$
D
$$\frac{1}{{\sqrt 2 }}, \frac{1}{{\sqrt 2 }}$$
Answer :
$$\frac{1}{{\sqrt 2 }}, \frac{1}{{\sqrt 2 }}$$
View Solution
$$\eqalign{
& {\text{Given, }}{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \frac{\pi }{2} ......(1)\cr
& {\text{and }}{\cos ^{ - 1}}x - {\cos ^{ - 1}}y = 0 \cr
& \Rightarrow \left( {\frac{\pi }{2} - {{\sin }^{ - 1}}x} \right) - \left( {\frac{\pi }{2} - {{\sin }^{ - 1}}y} \right) = 0 \cr
& \Rightarrow {\sin ^{ - 1}}y - {\sin ^{ - 1}}x = 0 ......(2) \cr
& \Rightarrow {\sin ^{ - 1}}y = {\sin ^{ - 1}}x \cr} $$
From equations (1) and (2) , we get
$$\eqalign{
& 2{\sin ^{ - 1}}x = \frac{\pi }{2} \cr
& \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{4} \cr
& \Rightarrow x = \frac{1}{{\sqrt 2 }} \cr} $$
From equation (ii)
$$y = \frac{1}{{\sqrt 2 }}$$
43.
The trigonometric equation $${\sin ^{ - 1}}x = 2{\sin ^{ - 1}}a$$ has a solution for
A
$$\left| a \right| \geqslant \frac{1}{{\sqrt 2 }}$$
B
$$\frac{1}{2} < \left| a \right| < \frac{1}{{\sqrt 2 }}$$
C
$$\left| a \right| < \frac{1}{2}$$
D
None of these
Answer :
None of these
View Solution
$$\eqalign{
& {\sin ^{ - 1}}x = 2{\sin ^{ - 1}}a \cr
& - \frac{\pi }{2} \leqslant {\sin ^{ - 1}}x \leqslant \frac{\pi }{2}; \cr
& \therefore \,\, - \frac{\pi }{2} \leqslant 2{\sin ^{ - 1}}a \leqslant \frac{\pi }{2} \cr
& - \frac{\pi }{4} \leqslant {\sin ^{ - 1}}a \leqslant \frac{\pi }{4}\,\,{\text{or }}\frac{{ - 1}}{{\sqrt 2 }} \leqslant a \leqslant \frac{1}{{\sqrt 2 }} \cr
& \therefore \,\,\left| a \right| \leqslant \frac{1}{{\sqrt 2 }} \cr} $$
44.
The value of $$\tan \left\{ {2{{\tan }^{ - 1}}\frac{1}{5} - \frac{\pi }{4}} \right\}$$ is
A
$$0$$
B
$$1$$
C
$$\frac{7}{{17}}$$
D
None of these
Answer :
None of these
View Solution
$$2{\tan ^{ - 1}}\frac{1}{5} = {\tan ^{ - 1}}\frac{{2 \cdot \frac{1}{5}}}{{1 - {{\left( {\frac{1}{5}} \right)}^2}}} = {\tan ^{ - 1}}\frac{5}{{12}}$$
∴ the value $$ = \frac{{\tan \left( {{{\tan }^{ - 1}}\frac{5}{{12}}} \right) - \tan \frac{\pi }{4}}}{{1 + \tan \left( {{{\tan }^{ - 1}}\frac{5}{{12}}} \right) \cdot \tan \frac{\pi }{4}}} = \frac{{\frac{5}{{12}} - 1}}{{1 + \frac{5}{{12}} \cdot 1}}.$$
45.
If $$\sum\limits_{i = 1}^{2n} {{{\cos }^{ - 1}}{x_i} = 0} $$ then $$\sum\limits_{i = 1}^{2n} {{x_i}} $$ is
A
$$n$$
B
$$2n$$
C
$$\frac{{n\left( {n + 1} \right)}}{2}$$
D
None of these
Answer :
$$2n$$
View Solution
$$\eqalign{
& {\text{Since, }}0 \leqslant {\cos ^{ - 1}}{x_i} \leqslant \pi , \cr
& \therefore {\cos ^{ - 1}}{x_i} = 0{\text{ for all }}i. \cr
& \therefore {x_i} = 1{\text{ for all }}i \cr
& \therefore \sum\limits_{i = 1}^{2n} {{x_i} = 2n} \cr} $$
46.
The solution set of the equation $${\cos ^{ - 1}}x - {\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {1 - x} \right)$$ is
A
$$\left[ { - 1,1} \right]$$
B
$$\left[ {0,\frac{1}{2}} \right]$$
C
$$\left[ { - 1,0} \right]$$
D
None of these
Answer :
None of these
View Solution
$${\sin ^{ - 1}}x,{\cos ^{ - 1}}x\,$$ exist for $$ - 1 \leqslant x \leqslant 1.$$ But for $${\sin ^{ - 1}}\left( {1 - x} \right)$$ we must have $$ - 1 \leqslant 1 - x \leqslant 1,\,{\text{i}}{\text{.e}}{\text{., }}0 \leqslant x \leqslant 2.$$ So the equation may hold for $$0 \leqslant x \leqslant 1.$$ Therefore, the options $$A, B$$ and $$C$$ are incorrect.
47.
If $${\sin ^{ - 1}}x = {\tan ^{ - 1}}y,$$ what is the value of $$\frac{1}{{{x^2}}} - \frac{1}{{{y^2}}}\,?$$
A
$$1$$
B
$$ - 1$$
C
$$0$$
D
$$2$$
Answer :
$$1$$
View Solution
$$\eqalign{
& {\text{Let, }}{\sin ^{ - 1}}x = {\tan ^{ - 1}}y = \theta \cr
& \Rightarrow x = \sin \theta {\text{ and }}y = \tan \theta \cr
& \frac{1}{{{x^2}}} = \frac{1}{{{{\sin }^2}\theta }} = {\text{cose}}{{\text{c}}^2}\theta \cr
& {\text{and }}\frac{1}{{{y^2}}} = \frac{1}{{{{\tan }^2}\theta }} = {\cot ^2}\theta . \cr
& \Rightarrow \frac{1}{{{x^2}}} - \frac{1}{{{y^2}}} = {\text{cose}}{{\text{c}}^2}\theta - {\cot ^2}\theta = 1 \cr} $$
48.
If $${\cos ^{ - 1}}x - {\sin ^{ - 1}}x = 0$$ then $$x$$ is equal to
A
$$ \pm \frac{1}{{\sqrt 2 }}$$
B
$$1$$
C
$${\sqrt 2 }$$
D
$$ \frac{1}{{\sqrt 2 }}$$
Answer :
$$ \frac{1}{{\sqrt 2 }}$$
View Solution
No explanation is given for this question. Let's discuss the answer together.
49.
If $${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \frac{{2\pi }}{3},{\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \frac{\pi }{3}$$ then the number of values of $$\left( {x,y} \right)$$ is
A
two
B
four
C
zero
D
None of these
Answer :
None of these
View Solution
Adding, $$\frac{\pi }{2} + {\sin ^{ - 1}}y - {\cos ^{ - 1}}y = \frac{\pi }{3}$$
or, $$\pi - 2{\cos ^{ - 1}}y = \frac{\pi }{3}\,\,{\text{or, }}{\cos ^{ - 1}}y = \frac{\pi }{3}$$
$$\eqalign{
& \Rightarrow \,\,y = \frac{1}{2} \cr
& \therefore \,\,{\sin ^{ - 1}}x + {\sin ^{ - 1}}\frac{1}{2} = \frac{{2\pi }}{3}\,\,{\text{or,}}\,\,{\sin ^{ - 1}}x = \frac{{2\pi }}{3} - \frac{\pi }{3} = \frac{\pi }{3} \cr
& \Rightarrow \,\,x = \frac{{\sqrt 3 }}{2}. \cr} $$
So, there is one solution.
50.
What is the value of $${\sec ^2}{\tan ^{ - 1}}\left( {\frac{5}{{11}}} \right)\,?$$
A
$$\frac{{121}}{{96}}$$
B
$$\frac{{211}}{{921}}$$
C
$$\frac{{146}}{{121}}$$
D
$$\frac{{267}}{{121}}$$
Answer :
$$\frac{{146}}{{121}}$$
View Solution
$$\eqalign{
& {\text{Let, }}{\sec ^2}\left( {{{\tan }^{ - 1}}\left( {\frac{5}{{11}}} \right)} \right) \cr
& = 1 + {\tan ^2}\left( {{{\tan }^{ - 1}}\left( {\frac{5}{{11}}} \right)} \right)\left( {\because {{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right) \cr
& = 1 + {\left[ {\tan \left( {{{\tan }^{ - 1}}\left( {\frac{5}{{11}}} \right)} \right)} \right]^2} = 1 + {\left( {\frac{5}{{11}}} \right)^2} \cr
& = 1 + \frac{{25}}{{121}} = \frac{{146}}{{121}} \cr} $$