41.
The number of real negative terms in the binomial expansion of $${\left( {1 + ix} \right)^{4n - 2}},n \in N,x > 0,$$ is
A
$$n$$
B
$$n + 1$$
C
$$n - 1$$
D
$$2n$$
Answer :
$$n$$
View Solution
$${t_{r + 1}} = {\,^{4n - 2}}{C_r}{\left( {ix} \right)^r}.$$ The term is real negative if $$r = 2,6,10,.....\,\,.$$
But $$0 \leqslant r \leqslant 4n - 2\,\,{\text{and }}4n - 2 = 2 + \left( {n - 1} \right)4.$$
∴ the required number of terms $$= n.$$
42.
Find the $$7^{th}$$ term from the end in the expansion of $${\left( {x - \frac{2}{{{x^2}}}} \right)^{10}}.$$
A
$$^{10}{C_4}$$
B
$$^{10}{C_4} \cdot {2^4}x$$
C
$${2^4} \cdot {x^2}$$
D
$$^{10}{C_4} \cdot {2^4}\left( {\frac{1}{{{x^2}}}} \right)$$
Answer :
$$^{10}{C_4} \cdot {2^4}\left( {\frac{1}{{{x^2}}}} \right)$$
View Solution
The $$7^{th}$$ term from the end $$= 5^{th}$$ term from beginning
$${T_5} = {\,^{10}}{C_4}{x^6}{\left( { - \frac{2}{{{x^2}}}} \right)^4} = {\,^{10}}{C_4} \cdot {2^4}\left( {\frac{1}{{{x^2}}}} \right)$$
43.
The coefficient of $$x^3$$ in the expansion of $${\left( {1 - x + {x^2}} \right)^5}$$ is
A
$$10$$
B
$$- 20$$
C
$$- 50$$
D
$$- 30$$
Answer :
$$- 30$$
View Solution
$$\eqalign{
& {\left( {1 - x + {x^2}} \right)^5} = {\left\{ {1 + x\left( {x - 1} \right)} \right\}^5} \cr
& {\left( {1 - x + {x^2}} \right)^5} = {\,^5}{C_0} + {\,^5}{C_1}x\left( {x - 1} \right) + {\,^5}{C_2}{x^2}{\left( {x - 1} \right)^2} + {\,^5}{C_3}{x^3}{\left( {x - 1} \right)^3} + ..... \cr} $$
∴ the co-efficient of $${x^3} = - 2 \cdot {\,^5}{C_2} - {\,^5}{C_3}.$$
44.
The number of term in the expansion of $${\left[ {{{\left( {x + 4y} \right)}^3}{{\left( {x - 4y} \right)}^3}} \right]^2}$$ is
A
6
B
7
C
8
D
32
Answer :
7
View Solution
$$\eqalign{
& {\left[ {{{\left( {x + 4y} \right)}^3}{{\left( {x - 4y} \right)}^3}} \right]^2} = {\left[ {\left\{ {{x^2} - {{\left( {4y} \right)}^2}} \right\}} \right]^6} \cr
& = {\left( {{x^2} - 16{y^2}} \right)^6} \cr} $$
$$\therefore $$ No. of terms in the expansion $$ = 7$$
45.
In the binomial expansion of $${\left( {a - b} \right)^n},n \geqslant 5,$$ the sum of $${5^{th}}$$ and $${6^{th}}$$ terms is zero, then $$\frac{a}{b}$$ equals
A
$$\frac{{n - 5}}{6}$$
B
$$\frac{{n - 4}}{5}$$
C
$$\frac{5}{{n - 4}}$$
D
$$\frac{6}{{n - 5}}$$
Answer :
$$\frac{{n - 4}}{5}$$
View Solution
$${T_{r + 1}} = {\left( { - 1} \right)^r}.{\,^n}{C_r}{\left( a \right)^{n - r}}.{\left( b \right)^r}$$ is an expansion of $${\left( {a - b} \right)^n}$$
$$\eqalign{
& \therefore \,\,{5^{th}}\,{\text{term}}\,{\text{ = }}\,{t_5} = {t_{4 + 1}} \cr
& = \,{\left( { - 1} \right)^4}{.^n}{C_4}{\left( a \right)^{n - 4}}.{\left( b \right)^4} = {\,^n}{C_4}.{a^{n - 4}}\,.\,{b^4} \cr
& {6^{th}}{\text{ term }} = {t_6} = {t_{5 + 1}} \cr
& = {\left( { - 1} \right)^5}.{\,^n}{C_5}{\left( a \right)^{n - 5}}{\left( b \right)^5} \cr
& {\text{Given }}\,{t_5} + {t_6} = 0 \cr
& \therefore \,{\,^n}{C_4}.{a^{n - 4}}.{b^4} + \left( { - {\,^n}{C_5}.{a^{n - 5}}.{b^5}} \right) = 0 \cr
& \Rightarrow \,\,\frac{{n!}}{{4!\left( {n - 4} \right)!}}.\frac{{{a^n}}}{{{a^4}}}.{b^4} - \frac{{n!}}{{5!\left( {n - 5} \right)!}}.\frac{{{a^n}{b^5}}}{{{a^5}}} = 0 \cr
& \Rightarrow \,\,\frac{{n!.{a^n}{b^4}}}{{4!\left( {n - 5} \right)!.{a^4}}}\left[ {\frac{1}{{\left( {n - 4} \right)}} - \frac{b}{{5.a}}} \right] = 0 \cr
& {\text{or, }}\frac{1}{{n - 4}} - \frac{b}{{5a}} = 0 \cr
& \Rightarrow \,\,\frac{a}{b} = \frac{{n - 4}}{5} \cr} $$
46.
The remainder left out when $${8^{2n}} - {\left( {62} \right)^{2n + 1}}$$ is divided by 9 is:
A
2
B
7
C
8
D
0
Answer :
2
View Solution
$$\eqalign{
& {8^{2n}} - {\left( {62} \right)^{2n + 1}} \cr
& = {\left( {64} \right)^n} - {\left( {62} \right)^{2n + 1}} = {\left( {63 + 1} \right)^n} - {\left( {63 - 1} \right)^{2n + 1}} \cr
& = \left[ {^n{C_0}{{\left( {63} \right)}^n} + {\,^n}{C_1}{{\left( {63} \right)}^{n - 1}} + {\,^n}{C_2}{{\left( {63} \right)}^{n - 2}} + ..... + {\,^n}{C_{n - 1}}\left( {63} \right) + {\,^n}{C_n}} \right] \cr
& = \left[ {^{2n + 1}{C_0}{{\left( {63} \right)}^{2n + 1}} - {\,^{2n + 1}}{C_1}{{\left( {63} \right)}^{2n}} + {\,^{2n + 1}}{C_2}{{\left( {63} \right)}^{2n - 1}} - ..... + \,{{\left( { - 1} \right)}^{2n + 1}}{\,^{2n + 1}}{C_{2 + 1}}} \right] \cr
& = 63 \times \left[ {^n{C_0}{{\left( {63} \right)}^{n - 1}} + {\,^n}{C_1}{{\left( {63} \right)}^{n - 2}} + {\,^n}{C_2}{{\left( {63} \right)}^{n - 3}} + .....} \right] + 1 - 63 \times \left[ {^{2n + 1}{C_0}{{\left( {63} \right)}^{2n}} - {\,^{2n + 1}}{C_1}{{\left( {63} \right)}^{2n - 1}} + .....} \right] + 1 \cr
& \Rightarrow \,\,63 \times {\text{some integral value}} + 2 \cr} $$
$$ \Rightarrow \,\,{8^{2n}} - {\left( {62} \right)^{2n + 1}}$$ when divided by 9 leaves 2 as the remainder.
47.
If the second term in the expansion $${\left( {\root {13} \of a + \frac{a}{{\sqrt {{a^{ - 1}}} }}} \right)^n}$$ is $$14{a^{\frac{5}{2}}},$$ then $$\frac{{^n{C_3}}}{{^n{C_2}}} = $$
A
4
B
3
C
12
D
6
Answer :
4
View Solution
We have, $${T_2} = 14\,{a^{\frac{5}{2}}}$$
$$\eqalign{
& \Rightarrow {\,^n}{C_1}{\left( {{a^{\frac{1}{{13}}}}} \right)^{n - 1}}\left( {{a^{\frac{3}{2}}}} \right) = 14{a^{\frac{5}{2}}} \cr
& \Rightarrow \,n{a^{\frac{{n - 1}}{{13}} + \frac{3}{2}}} = 14{a^{\frac{5}{2}}} \cr
& \Rightarrow \,n = 14 \cr
& \Rightarrow \,\frac{{{\,^n}{C_3}}}{{{\,^n}{C_2}}} = \frac{{{\,^{14}}{C_3}}}{{{\,^{14}}{C_2}}} = \frac{{12}}{3} = 4 \cr} $$
48.
The last term in the binomial expansion of $${\left( {\root 3 \of 2 - \frac{1}{{\sqrt 2 }}} \right)^n}{\text{is }}{\left( {\frac{1}{{3 \cdot \root 3 \of 9 }}} \right)^{{{\log }_3}8}}.$$ Then the $${5^{th}}$$ term from the beginning is
A
$$^{10}{C_6}$$
B
$$2{ \cdot ^{10}}{C_4}$$
C
$$\frac{1}{2}{ \cdot ^{10}}{C_4}$$
D
None of these
Answer :
$$^{10}{C_6}$$
View Solution
The last term $$ = {\,^n}{C_n} \cdot {\left( { - \frac{1}{{\sqrt 2 }}} \right)^n} = {\left( {\frac{1}{{3 \cdot \root 3 \of 9 }}} \right)^{{{\log }_3}8}}\left( {{\text{from the question}}} \right)$$
$$\eqalign{
& \therefore \,\,{\left( { - 1} \right)^n} \cdot {\left( {\frac{1}{2}} \right)^{\frac{n}{2}}} = {\left( {\frac{1}{{{3^{\frac{5}{3}}}}}} \right)^{{{\log }_3}8}} \cr
& = {3^{ - \frac{5}{3} \cdot 3{{\log }_3}2}} = {3^{{{\log }_3}{2^{ - 5}}}} = {2^{ - 5}} = {\left( {\frac{1}{2}} \right)^5}. \cr
& \therefore \,\,n = 10. \cr
& {\text{So, }}{t_5} = {\,^{10}}{C_4} \cdot {\left( {{2^{\frac{1}{3}}}} \right)^6} \cdot {\left( { - \frac{1}{{\sqrt 2 }}} \right)^4} = {\,^{10}}{C_4} = {\,^{10}}{C_{10 - 4}}. \cr} $$
49.
The coefficient of $$x^{83}$$ in $${\left( {1 + x + {x^2} + {x^3} + {x^4}} \right)^n}{\left( {1 - x} \right)^{n + 3}},\,$$ is $$ - {\,^n}{C_{2\lambda }},$$ then find the value of $$\lambda$$
A
12
B
10
C
9
D
8
Answer :
8
View Solution
We have, $${\left( {1 + x + {x^2} + {x^3} + {x^4}} \right)^n}{\left( {1 - x} \right)^{n + 3}}$$
$$\eqalign{
& = \frac{{{{\left( {{x^5} - 1} \right)}^n}}}{{{{\left( {1 - x} \right)}^n}}} \cdot {\left( {x - 1} \right)^{n + 3}} = {\left( {{x^5} - 1} \right)^n}{\left( {x - 1} \right)^3} \cr
& = \left( { + {x^3} - 3{x^2} + 3x - 1} \right)\sum\limits_{r = 0}^n {^n{C_r}{{\left( { - 1} \right)}^r}{x^{5r}}} \cr
& = + \sum\limits_{r = 0}^n {^n{C_r}{{\left( { - 1} \right)}^r}{x^{5r + 3}} + 3\sum\limits_{r = 0}^n {^n{C_r}{{\left( { - 1} \right)}^r}{x^{5r + 2}}} } - 3\sum\limits_{r = 0}^n {^n{C_r}} {\left( { - 1} \right)^r}{x^{5r + 1}} + 3\sum\limits_{r = 0}^n {^n{C_r}} {\left( { - 1} \right)^r}{x^{5r}} \cr} $$
For term containing $$x^{83},$$ we have $$5r + 3 = 83$$
$$ \Rightarrow $$ $$r = 16$$ whereas $$5r + 2 = 83, 5r + 1 = 83$$ and $$5r = 83$$ give no integral value of $$r.$$ Hence, there is only one term containing $$x^{83}$$ whose coefficient
$$\eqalign{
& = - {\,^n}{C_{16}} = - {\,^n}{C_{2\lambda }} \cr
& \therefore 2\lambda = 16 \cr
& \Rightarrow \lambda = 8. \cr} $$
50.
Co-efficient of $${t^{24}}$$ in $${\left( {1 + {t^2}} \right)^{12}}\left( {1 + {t^{12}}} \right)\left( {1 + {t^{24}}} \right)$$ is
A
$$^{12}{C_6} + 3$$
B
$$^{12}{C_6} + 1$$
C
$$^{12}{C_6}$$
D
$$^{12}{C_6} + 2$$
Answer :
$$^{12}{C_6} + 2$$
View Solution
$$\eqalign{
& {\left( {1 + {t^2}} \right)^{12}}\left( {1 + {t^{12}}} \right)\left( {1 + {t^{24}}} \right) \cr
& = \left( {1 + {t^{12}} + {t^{24}} + {t^{36}}} \right){\left( {1 + {t^2}} \right)^{12}} \cr} $$
∴ Co-eff. of $${t^{24}} = 1 \times $$ Co-eff. of $${t^{24}}$$ in $${\left( {1 + {t^2}} \right)^{12}} + 1 \times $$ Co-eff. of $${t^{12}}$$ in $${\left( {1 + {t^2}} \right)^{12}} + 1 \times $$ constant term in $${\left( {1 + {t^2}} \right)^{12}}$$
$$\eqalign{
& = {\,^{12}}{C_{12}} + {\,^{12}}{C_6} + {\,^{12}}{C_0} \cr
& = 1 + {\,^{12}}{C_6} + 1 \cr
& = {\,^{12}}{C_6} + 2 \cr} $$