3.
If $$m_1 , m_2 , m_3$$ and $$m_4$$ respectively denote the moduli of the complex numbers $$1 + 4i, 3 + i, 1 – i$$ and $$2 – 3i,$$ then the correct one, among the following is
4.
$$z$$ and $$w$$ are two nonzero complex numbers such that $$\left| z \right| = \left| w \right|\,\,{\text{and Arg}}\,z + {\text{Agr}}\,w = \pi $$ then $$z$$ equals
5.
If $${z_1}\,{\text{and }}{z_2}$$ are two non- zero complex numbers such that $$\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|,{\text{then arg }}{z_1} - {\text{arg }}{z_2}$$ is equal to
A
$$\frac{\pi }{2}$$
B
$$ - \pi $$
C
$$0$$
D
$$ \frac{ - \pi }{2}$$
Answer :
$$0$$
$$\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|$$
$$ \Rightarrow \,\,{z_1}\,{\text{and }}{z_2}$$ are collinear and are to the same side of origin; hence $${\text{arg }}{z_1} - {\text{arg }}{z_2} = 0.$$
6.
If $$\operatorname{Re} \left( {\frac{{z - 1}}{{z + 1}}} \right) = 0,$$ where $$2 = x + iy$$ is a complex number, then which one of the following is correct ?
8.
If $$P,P'$$ represent the complex number $${z_1}$$ and its additive inverse respectively then the complex equation of the circle with $$PP'$$ as a diameter is
A
$$\frac{z}{{{z_1}}} = \left( {\frac{{{{\overline z }_1}}}{z}} \right)$$
B
$$z\overline z + {z_1}{\overline z _1} = 0$$
C
$$z{\overline z _1} + \overline z {z_1} = 0$$
D
None of these
Answer :
$$\frac{z}{{{z_1}}} = \left( {\frac{{{{\overline z }_1}}}{z}} \right)$$
Clearly, $$\left| z \right| = \left| {{z_1}} \right|$$
$$\eqalign{
& \therefore \,\,z\overline z = {z_1}{\overline z _1} \cr
& {\text{or, }}\frac{z}{{{z_1}}} = \frac{{{{\overline z }_1}}}{{\overline z }} = \overline {\left( {\frac{{{z_1}}}{z}} \right)} . \cr} $$
9.
If $$f\left( z \right) = \frac{{7 - z}}{{1 - {z^2}}} ,$$ where $$z = 1 + 2i,$$ then $$\left| {f\left( z \right)} \right|$$ is equal to :
10.
If $${z_1},{z_2}$$ are two non-zero complex numbers such that $$\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|$$ then $${\text{amp}}\frac{{{z_1}}}{{{z_2}}}$$ is equal to
A
$$\pi $$
B
$$ - \pi $$
C
$$0$$
D
$$\frac{\pi }{2}$$
Answer :
$$0$$
$$\left| {{z_1} + {z_2}} \right| = \left| {{z_1}} \right| + \left| {{z_2}} \right|$$ can hold when $$0,{z_1},{z_2}$$ are collinear with $$0$$ at one end.