Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

51. If $$i = \sqrt { - 1} ,$$  the number of values of $${i^n} + {i^{ - n}}$$  for different $$n \in Z$$  is

A 3
B 2
C 4
D 1
Answer :   3

52. If $$\alpha ,\beta $$  be two complex numbers then $${\left| \alpha \right|^2} + {\left| \beta \right|^2}$$  is equal to

A $$\frac{1}{2}\left( {{{\left| {\alpha + \beta } \right|}^2} - {{\left| {\alpha - \beta } \right|}^2}} \right)$$
B $$\frac{1}{2}\left( {{{\left| {\alpha + \beta } \right|}^2} + {{\left| {\alpha - \beta } \right|}^2}} \right)$$
C $${{{\left| {\alpha + \beta } \right|}^2} + {{\left| {\alpha - \beta } \right|}^2}}$$
D None of these
Answer :   $$\frac{1}{2}\left( {{{\left| {\alpha + \beta } \right|}^2} + {{\left| {\alpha - \beta } \right|}^2}} \right)$$

53. If $${\text{amp}}\frac{{z - 1}}{{z + 1}} = \frac{\pi }{3}$$    then $$z$$ represents a point on

A a straight line
B a circle
C a pair of lines
D None of these
Answer :   a circle

54. If the fourth roots of unity are $${z_1},{z_2},{z_3},{z_4}$$   then $$z_1^2 + z_2^2 + z_3^2 + z_4^2$$    is equal to

A $$1$$
B $$0$$
C $$i$$
D None of these
Answer :   $$0$$

55. The locus of a point in the Argand plane that moves satisfying the equation $$\left| {z - 1 + i} \right| - \left| {z - 2 - i} \right| = 3:$$

A is a circle with radius $$3$$ and center at $$z = \frac{3}{2}$$
B is an ellipse with its foci at $$1 – i$$  and $$2 + i$$  and major axis $$= 3$$
C is a hyperbola with its foci at $$1 – i$$  and $$2 + i$$  and its transverse axis $$= 3$$
D None of the above
Answer :   is a hyperbola with its foci at $$1 – i$$  and $$2 + i$$  and its transverse axis $$= 3$$

56. Number of solutions of the equation, $${z^3} + \frac{{3{{\left| z \right|}^2}}}{z} = 0,$$   where $$z$$ is a complex number and $$\left| z \right| = \sqrt 3 $$   is

A 2
B 3
C 6
D 4
Answer :   4

57. If $$z$$ is a complex number of unit modulus and argument $$\theta ,$$  then $$\arg \left( {\frac{{1 + z}}{{1 + \overline z }}} \right)$$   equals:

A $$ - \theta $$
B $$\frac{\pi }{2} - \theta $$
C $$ \theta $$
D $$\pi - \theta $$
Answer :   $$ \theta $$

58. If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, and $${\left( {1 + \omega } \right)^7} = A + B\omega .$$    Then $$(A , B)$$  equals

A $$(1 , 1)$$
B $$(1 , 0)$$
C $$(- 1 , 1)$$
D $$(0 , 1)$$
Answer :   $$(1 , 1)$$

59. If $$z = 1 + i\,\tan \,\alpha \left( { - \pi < \alpha < - \frac{\pi }{2}} \right),$$       then polar form of the complex number $$z$$ is :

A $$\frac{1}{{\cos \alpha }}\left( {\cos \alpha + i\sin \alpha } \right)$$
B $$\frac{1}{{ - \cos \,\alpha }}\left[ {\cos \left( {\pi + \alpha } \right) + i\,\sin \left( {\pi + \alpha } \right)} \right]$$
C $$\frac{1}{{ \cos \,\alpha }}\left[ {\cos \left( {2\pi + \alpha } \right) + i\,\sin \left( {2\pi + \alpha } \right)} \right]$$
D None of these
Answer :   $$\frac{1}{{ - \cos \,\alpha }}\left[ {\cos \left( {\pi + \alpha } \right) + i\,\sin \left( {\pi + \alpha } \right)} \right]$$

60. What is the real part of $${\left( {\sin \,x + i\,\cos \,x} \right)^3}$$   where $$i = \sqrt { - 1} \,?$$

A $$ - \cos \,3x$$
B $$ - \sin \,3x$$
C $$ \sin \,3x$$
D $$ \cos \,3x$$
Answer :   $$ - \sin \,3x$$