125.
The value of $$a\left( {a > 0} \right)$$ for which the area bounded by the curves $$y = \frac{x}{6} + \frac{1}{{{x^2}}},\,y = 0,\,x = a$$ and $$x = 2a$$ has the least value is :
A
$$2$$
B
$$\sqrt 2 $$
C
$${2^{\frac{1}{3}}}$$
D
$$1$$
Answer :
$$1$$
$$\eqalign{
& f\left( a \right) = \int\limits_a^{2a} {\left( {\frac{x}{6} + \frac{1}{{{x^2}}}} \right)dx} \cr
& = \left( {\frac{{{x^2}}}{{12}} - \frac{1}{x}} \right)_a^{2a} \cr
& = \left( {\frac{{4{a^2}}}{{12}} - \frac{1}{{2a}} - \frac{{{a^2}}}{{12}} + \frac{1}{a}} \right) \cr
& = \frac{{{a^2}}}{4} + \frac{1}{{2a}} \cr
& {\text{Let }}f'\left( a \right) = \frac{{2a}}{4} - \frac{1}{{2{a^2}}} = 0 \cr
& \Rightarrow a = 1{\text{ which is a point of minima}}{\text{.}} \cr} $$
126.
The value of $$\int_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)dx} $$ is :
127.
The area of the region bounded by the parabola $${\left( {y - 2} \right)^2} = x - 1,$$ the tangent of the parabola at the point (2, 3) and the $$x$$-axis is:
A
$$6$$
B
$$9$$
C
$$12$$
D
$$3$$
Answer :
$$9$$
The given parabola is $${\left( {y - 2} \right)^2} = x - 1$$
Vertex $$\left( {1,\,2} \right)$$ and it meets $$x$$-axis at $$\left( {5,\,0} \right)$$
Also it gives $${y^2} - 4y - x + 5 = 0$$
So, that equation of tangent to the parabola at $$\left( {2,\,3} \right)$$ is
$$\eqalign{
& y.3 - 2\left( {y + 3} \right) - \frac{1}{2}\left( {x + 2} \right) + 5 = 0 \cr
& {\text{or }}x - 2y + 4 = 0 \cr} $$
which meets $$x$$-axis at $$\left( { - 4,\,0} \right).$$
In the figure shaded area is the required area.
Let us draw PD perpendicular to $$y$$-axis.
$$\eqalign{
& {\text{Then required area :}} \cr
& = {\text{ Ar }}\Delta {\text{BOA}} + {\text{Ar }}\left( {{\text{OCPD}}} \right) - {\text{Ar }}\left( {\Delta {\text{APD}}} \right) \cr
& = \frac{1}{2} \times 4 \times 2 + \int_0^3 {x\,dy} - \frac{1}{2} \times 2 \times 1 \cr
& = 3 + \int_0^3 {{{\left( {y - 2} \right)}^2} + 1\,dy} \cr
& = 3 + \left[ {\frac{{{{\left( {y - 2} \right)}^3}}}{3} + y} \right]_0^3 \cr
& = 3 + \left[ {\frac{1}{3} + 3 + \frac{8}{3}} \right] \cr
& = 3 + 6 \cr
& = 9{\text{ sq}}{\text{. units }} \cr} $$
128.
Which of the following is not the area of the region bounded by $$y = {e^x}$$ and $$x = 0$$ and $$y = e\,?$$
129.
Let $$f\left( x \right)$$ be a non-negative continuous function such that the area bounded by the curve $$y = f\left( x \right),$$ $$x$$-axis and the ordinates $$x = \frac{\pi }{4}$$ and $$x = \beta > \frac{\pi }{4}$$ is $$\left( {\beta \,\sin \,\beta + \frac{\pi }{4}\cos \,\beta + \sqrt 2 \beta } \right).$$ Then $$f\left( {\frac{\pi }{2}} \right)$$ is-
A
$$\left( {\frac{\pi }{4} + \sqrt 2 - 1} \right)$$
B
$$\left( {\frac{\pi }{4} - \sqrt 2 + 1} \right)$$