Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

121. The area (in square units) bounded by the curves $$y = \sqrt x ,\,2y - x + 3 = 0,$$     $$x$$-axis, and lying in the first quadrant is:

A $$9$$
B $$36$$
C $$18$$
D $$\frac{{27}}{4}$$
Answer :   $$9$$

122. The area of the region enclosed by the curves $$y = x\,{\log _e}x$$   and $$y = 2x - 2{x^2}$$   is :

A $$\frac{5}{{12}}$$
B $$\frac{7}{{12}}$$
C $$1$$
D $$\frac{4}{7}$$
Answer :   $$\frac{7}{{12}}$$

123. $$\int_1^3 {\left| {\left( {2 - x} \right){{\log }_e}x} \right|dx} $$     is equal to :

A $$\frac{3}{2}{\log _e}3 + \frac{1}{2}$$
B $${\log _e}\frac{{16}}{{3\sqrt 2 }} - \frac{1}{2}$$
C $$ - \frac{3}{2}{\log _e}3 - \frac{1}{2}$$
D none of these
Answer :   $${\log _e}\frac{{16}}{{3\sqrt 2 }} - \frac{1}{2}$$

124. The area enclosed by the curve $${x^2}y = 36,$$   the $$x$$-axis and the lines $$x = 6$$  and $$x = 9$$  is :

A 6
B 1
C 4
D 2
Answer :   2

125. The value of $$a\left( {a > 0} \right)$$   for which the area bounded by the curves $$y = \frac{x}{6} + \frac{1}{{{x^2}}},\,y = 0,\,x = a$$       and $$x = 2a$$   has the least value is :

A $$2$$
B $$\sqrt 2 $$
C $${2^{\frac{1}{3}}}$$
D $$1$$
Answer :   $$1$$

126. The value of $$\int_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)dx} $$    is :

A $$-1$$
B 2
C $$1 + {e^{ - 1}}$$
D none of these
Answer :   none of these

127. The area of the region bounded by the parabola $${\left( {y - 2} \right)^2} = x - 1,$$    the tangent of the parabola at the point (2, 3) and the $$x$$-axis is:

A $$6$$
B $$9$$
C $$12$$
D $$3$$
Answer :   $$9$$

128. Which of the following is not the area of the region bounded by $$y = {e^x}$$  and $$x = 0$$  and $$y = e\,?$$

A $$e - 1$$
B $$\int\limits_1^e {\ln \left( {e + 1 - y} \right)dy} $$
C $$e - \int\limits_0^1 {{e^x}dx} $$
D $$\int\limits_1^e {\ln \,y\,dy} $$
Answer :   $$e - \int\limits_0^1 {{e^x}dx} $$

129. Let $$f\left( x \right)$$  be a non-negative continuous function such that the area bounded by the curve $$y = f\left( x \right),$$   $$x$$-axis and the ordinates $$x = \frac{\pi }{4}$$   and $$x = \beta > \frac{\pi }{4}$$   is $$\left( {\beta \,\sin \,\beta + \frac{\pi }{4}\cos \,\beta + \sqrt 2 \beta } \right).$$      Then $$f\left( {\frac{\pi }{2}} \right)$$  is-

A $$\left( {\frac{\pi }{4} + \sqrt 2 - 1} \right)$$
B $$\left( {\frac{\pi }{4} - \sqrt 2 + 1} \right)$$
C $$\left( {1 - \frac{\pi }{4} - \sqrt 2 } \right)$$
D $$\left( {1 - \frac{\pi }{4} + \sqrt 2 } \right)$$
Answer :   $$\left( {1 - \frac{\pi }{4} + \sqrt 2 } \right)$$

130. Area bounded by the curve $$x{y^2} = {a^2}\left( {a - x} \right)$$    and $$y$$-axis is :

A $$\frac{{\pi {a^2}}}{2}{\text{ sq}}{\text{. units}}$$
B $$\pi {a^2}{\text{ sq}}{\text{. units}}$$
C $$3\pi {a^2}{\text{ sq}}{\text{. units}}$$
D None of these
Answer :   $$\pi {a^2}{\text{ sq}}{\text{. units}}$$