Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

131. What is the area of the portion of the curve $$y = \sin \,x,$$   lying between $$x = 0,\,y = 0$$    and $$x = 2\pi \,?$$

A 1 square unit
B 2 square units
C 4 square units
D 8 square units
Answer :   2 square units

132. The line $$y = mx$$  bisects the area enclosed by lines $$x = 0,\,y = 0$$    and $$x = \frac{3}{2}$$  and the curve $$y = 1 + 4x - {x^2}.$$    Then the value of $$m$$ is :

A $$\frac{{13}}{6}$$
B $$\frac{{13}}{2}$$
C $$\frac{{13}}{5}$$
D $$\frac{{13}}{7}$$
Answer :   $$\frac{{13}}{6}$$

133. The triangle formed by the tangent to the curve $$f\left( x \right) = {x^2} + bx - b$$     at the point $$\left( {1,\,1} \right)$$  and the coordinate axes, lies in the first quadrant. If its area is $$2,$$ then the value of $$b$$ is :

A $$ - 1$$
B $$3$$
C $$ - 3$$
D $$1$$
Answer :   $$ - 3$$

134. If $$\left[ y \right] = $$  the greatest integer less than or equal to $$y$$ then $$\int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left[ {2\sin \,x} \right]dx} $$    is :

A $$ - \pi $$
B 0
C $$ - \frac{\pi }{2}$$
D $$\frac{\pi }{2}$$
Answer :   $$ - \frac{\pi }{2}$$

135. If $$y = f\left( x \right)$$   makes $$+ve$$  intercept of $$2$$ and $$0$$ unit on $$x$$ and $$y$$ axes and encloses an area of $$\frac{3}{4}$$ square unit with the axes then, $$\int\limits_0^2 {x\,f'\left( x \right)dx} $$   is-

A $$\frac{3}{2}$$
B $$1$$
C $$\frac{5}{4}$$
D $$ - \frac{3}{4}$$
Answer :   $$ - \frac{3}{4}$$

136. If $$\int_0^1 {\left( {1 + {{\sin }^4}x} \right)\left( {a{x^2} + bx + c} \right)dx} = \int_0^2 {\left( {1 + {{\sin }^4}x} \right)\left( {a{x^2} + bx + c} \right)dx} $$              then the quadratic equation $$a{x^2} + bx + c = 0$$     has :

A at least one root in (1, 2)
B no root in (1, 2)
C two equal roots in (1, 2)
D both roots imaginary
Answer :   at least one root in (1, 2)

137. The area bounded by the lines $$y = \left| {x - 2} \right|,\,\left| x \right| = 3$$     and $$y=0$$  is :

A $$13{\text{ uni}}{{\text{t}}^2}$$
B $$5{\text{ uni}}{{\text{t}}^2}$$
C $$9{\text{ uni}}{{\text{t}}^2}$$
D $$7{\text{ uni}}{{\text{t}}^2}$$
Answer :   $$13{\text{ uni}}{{\text{t}}^2}$$

138. If $$\phi \left( x \right) = \int_x^{{x^2}} {\left( {t - 1} \right)dt,\,1 \leqslant x \leqslant 2,} $$        then the greatest value of $$\phi \left( x \right)$$  is :

A 2
B 4
C 8
D none of these
Answer :   4

139. The area enclosed between the curve $$y = {\log _e}\left( {x + e} \right)$$    and the coordinate axes is :

A 1
B 2
C 3
D 4
Answer :   1

140. $$\int_0^{\frac{\pi }{4}} {\sin \,x\,d\left( {x - \left[ x \right]} \right)} $$     is equal to :

A $$\frac{1}{2}$$
B $$1 - \frac{1}{{\sqrt 2 }}$$
C 1
D none of these
Answer :   $$1 - \frac{1}{{\sqrt 2 }}$$