Application of Integration MCQ Questions & Answers in Calculus | Maths

Learn Application of Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

141. The value of $$\int_0^\pi {\left[ {\cos \,x} \right]dx} ,$$    where $$\left[ . \right]$$ is the greatest integer function, is

A $$\frac{\pi }{2}$$
B 0
C $$\pi $$
D $$ - \frac{\pi }{2}$$
Answer :   $$ - \frac{\pi }{2}$$

142. $$\int_0^3 {\left| {{x^3} - 3{x^2} + 2x} \right|dx} $$     is equal to :

A $$\frac{3}{4}$$
B $$\frac{7}{4}$$
C $$\frac{{11}}{4}$$
D none of these
Answer :   $$\frac{{11}}{4}$$

143. The value of $$\int_\alpha ^\beta {x\left| x \right|dx,} $$   where $$\alpha < 0 < \beta ,$$   is :

A $$\frac{1}{2}\left( {{\alpha ^2} + {\beta ^2}} \right)$$
B $$\frac{1}{3}\left( {{\beta ^2} - {\alpha ^2}} \right)$$
C $$\frac{1}{3}\left( {{\alpha ^3} + {\beta ^3}} \right)$$
D none of these
Answer :   $$\frac{1}{3}\left( {{\alpha ^3} + {\beta ^3}} \right)$$

144. The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is $$1$$ sq. unit, then the value of $$a$$ is :

A $$\frac{1}{{\sqrt 3 }}$$
B $$\frac{1}{2}$$
C $$1$$
D $$\frac{1}{3}$$
Answer :   $$\frac{1}{{\sqrt 3 }}$$

145. Let $$g\left( x \right) = \cos \,{x^2},\,f\left( x \right) = \sqrt x ,$$      and $$\alpha ,\,\beta \left( {\alpha < \beta } \right)$$   be the roots of the quadratic equation $$18{x^2} - 9\pi x + {\pi ^2} = 0.$$     Then the area (in sq. units) bounded by the curve $$y = \left( {gof} \right)\left( x \right)$$   and the lines $$x = \alpha ,\,x = \beta $$   and $$y=0,$$  is :

A $$\frac{1}{2}\left( {\sqrt 3 + 1} \right)$$
B $$\frac{1}{2}\left( {\sqrt 3 - \sqrt 2 } \right)$$
C $$\frac{1}{2}\left( {\sqrt 2 - 1} \right)$$
D $$\frac{1}{2}\left( {\sqrt 3 - 1} \right)$$
Answer :   $$\frac{1}{2}\left( {\sqrt 3 - 1} \right)$$

146. If the area enclosed by $${y^2} = 4ax$$   is $$\frac{1}{3}\,sq.$$  unit, then the roots of the equation $${x^2} + 2x = a,$$   are :

A $$ - 4{\text{ and }}2$$
B $$4{\text{ and }}2$$
C $$ - 2{\text{ and }} - 4$$
D $$8{\text{ and }} - 8$$
Answer :   $$ - 4{\text{ and }}2$$

147. The slope of the tangent to a curve $$y = f\left( x \right)$$   at $$\left( {x,\,f\left( x \right)} \right)$$   is $$2x + 1.$$   If the curve passes through the point $$\left( {1,\,2} \right),$$  then the area of the region bounded by the curve, the $$x$$-axis and the line $$x = 1$$  is :

A $$\frac{5}{6}{\text{ sq}}{\text{. unit}}$$
B $$\frac{6}{5}{\text{ sq}}{\text{. unit}}$$
C $$\frac{1}{6}{\text{ sq}}{\text{. unit}}$$
D $$6{\text{ sq}}{\text{. unit}}$$
Answer :   $$\frac{5}{6}{\text{ sq}}{\text{. unit}}$$

148. What is the area enclosed between the curves $${y^2} = 12x$$   and the lines $$x = 0$$  and $$y = 6\,?$$

A 2 square units
B 4 square units
C 6 square units
D 8 square units
Answer :   6 square units

149. Let $$f\left( x \right)$$  be a continuous function such that the area bounded by the curve $$y = f\left( x \right),\,\,x$$   -axis and the lines $$x = 0$$  and $$x = a$$  is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a,$$       then $$f\left( {\frac{\pi }{2}} \right) = ?$$

A $$1$$
B $$\frac{1}{2}$$
C $$\frac{1}{3}$$
D none of these
Answer :   $$\frac{1}{2}$$

150. The area enclosed between the curves $${y^2} = x$$   and $$y = \left| x \right|$$   is-

A $$\frac{1}{6}$$
B $$\frac{1}{3}$$
C $$\frac{2}{3}$$
D $$1$$
Answer :   $$\frac{1}{6}$$