145.
Let $$g\left( x \right) = \cos \,{x^2},\,f\left( x \right) = \sqrt x ,$$ and $$\alpha ,\,\beta \left( {\alpha < \beta } \right)$$ be the roots of the quadratic equation $$18{x^2} - 9\pi x + {\pi ^2} = 0.$$ Then the area (in sq. units) bounded by the curve $$y = \left( {gof} \right)\left( x \right)$$ and the lines $$x = \alpha ,\,x = \beta $$ and $$y=0,$$ is :
A
$$\frac{1}{2}\left( {\sqrt 3 + 1} \right)$$
B
$$\frac{1}{2}\left( {\sqrt 3 - \sqrt 2 } \right)$$
146.
If the area enclosed by $${y^2} = 4ax$$ is $$\frac{1}{3}\,sq.$$ unit, then the roots of the equation $${x^2} + 2x = a,$$ are :
A
$$ - 4{\text{ and }}2$$
B
$$4{\text{ and }}2$$
C
$$ - 2{\text{ and }} - 4$$
D
$$8{\text{ and }} - 8$$
Answer :
$$ - 4{\text{ and }}2$$
$$\eqalign{
& y = \int_0^{\frac{4}{a}} {\left( {a.x - \sqrt {4a.x} } \right)dx} \cr
& \frac{1}{3} = \int_0^{\frac{4}{a}} {ax\,dx - \int_0^{\frac{4}{a}} {\sqrt {4ax} \,dx} } \cr
& \frac{1}{3} = \left[ {\frac{{a{x^2}}}{2}} \right]_0^{\frac{4}{a}} - 2\left[ {\frac{{{{\left( {4ax} \right)}^{\frac{3}{2}}}}}{3}} \right]_0^{\frac{4}{a}} \cr
& \frac{1}{3} = \frac{{\frac{{16a}}{{{a^2}}}}}{2} - \frac{2}{3}\left[ {4a{{\left( {\frac{4}{a}} \right)}^{\frac{3}{2}}}} \right],\,a = 8 \cr} $$
Putting the value of $$a$$ in $${x^2} + 2x - a = 0,$$ we get its roots i.e., $$ – 4$$ and $$2.$$
147.
The slope of the tangent to a curve $$y = f\left( x \right)$$ at $$\left( {x,\,f\left( x \right)} \right)$$ is $$2x + 1.$$ If the curve passes through the point $$\left( {1,\,2} \right),$$ then the area of the region bounded by the curve, the $$x$$-axis and the line $$x = 1$$ is :
We, given $$\frac{{dy}}{{dx}} = 2x + 1 \Rightarrow y = {x^2} + x + k$$
Since, the curve passes through the point $$\left( {1,\,2} \right)$$
$$\eqalign{
& \therefore \,2 = 1 + 1 + k \Rightarrow k = 0 \cr
& \therefore \,{\text{The curve is }}y = {x^2} + x \cr} $$
So, the required area
$$\eqalign{
& = \int_0^1 {\left( {{x^2} + x} \right)dx} \cr
& = \left[ {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right]_0^1 \cr
& = \frac{1}{3} + \frac{1}{2} \cr
& = \frac{5}{6}{\text{ sq}}{\text{. unit}} \cr} $$
148.
What is the area enclosed between the curves $${y^2} = 12x$$ and the lines $$x = 0$$ and $$y = 6\,?$$
A
2 square units
B
4 square units
C
6 square units
D
8 square units
Answer :
6 square units
Equation of given curve is $${y^2} = 12x$$
At $$y = 6,\,36 = 12x \Rightarrow x = 3$$
$$\therefore $$ Required area $$ = \int_0^3 {\left( {{y_1} - {y_2}} \right)dx} $$ where $${y_1}$$ represents line and $${y_2}$$ represents the curve.
$$\eqalign{
& = \int_0^3 {\left( {6 - \sqrt {12x} } \right)dx} \cr
& = \left[ {6x} \right]_0^3 - \sqrt {12} \left[ {\frac{{2{x^{\frac{3}{2}}}}}{3}} \right]_0^3 \cr
& = \left[ {6 \times 3} \right] - \frac{{\sqrt {12} \times 2 \times \sqrt {27} }}{3} \cr
& = 18 - 12 \cr
& = 6{\text{ sq}}{\text{. units}} \cr} $$
149.
Let $$f\left( x \right)$$ be a continuous function such that the area bounded by the curve $$y = f\left( x \right),\,\,x$$ -axis and the lines $$x = 0$$ and $$x = a$$ is $$\frac{{{a^2}}}{2} + \frac{a}{2}\sin \,a + \frac{\pi }{2}\cos \,a,$$ then $$f\left( {\frac{\pi }{2}} \right) = ?$$