Function MCQ Questions & Answers in Calculus | Maths
Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
91.
Let \[f\left( x \right) = \left\{ \begin{array}{l}
1 + \left| x \right|,\,x < - 1\\
\left[ x \right],\,x \ge - 1
\end{array} \right.\,,\] where $$\left[ \cdot \right]$$ denotes the greatest integer function. Then $$f\left\{ {f\left( { - 2.3} \right)} \right\}$$ is equal to :
93.
The domain of the function $$f\left( x \right) = {\log _e}\left\{ {\operatorname{sgn} \left( {9 - {x^2}} \right)} \right\} + \sqrt {{{\left[ x \right]}^3} - 4\left[ x \right]} $$ (where [.] represents the greatest integer function) is :
A
$$\left[ { - 2,\,1} \right) \cup \left[ {2,\,3} \right)$$
B
$$\left[ { - 4,\,1} \right) \cup \left[ {2,\,3} \right)$$
C
$$\left[ {4,\,1} \right) \cup \left[ {2,\,3} \right)$$
D
$$\left[ {2,\,1} \right) \cup \left[ {2,\,3} \right)$$
$$\eqalign{
& {\text{We have }}f\left( x \right) = {\log _e}\left\{ {\operatorname{sgn} \left( {9 - {x^2}} \right)} \right\} + \sqrt {{{\left[ x \right]}^3} - 4\left[ x \right]} \cr
& {\text{We must have, }}\operatorname{sgn} \left( {9 - {x^2}} \right) > 0 \cr
& \Rightarrow 9 - {x^2} > 0 \cr
& \Rightarrow {x^2} - 9 < 0 \cr
& \Rightarrow \left( {x - 3} \right)\left( {x + 3} \right) < 0 \cr
& \Rightarrow - 3 < x < 3......({\text{i}}) \cr
& {\text{Also }}{\left[ x \right]^3} - 4\left[ x \right] \geqslant 0 \cr
& \Rightarrow \left[ x \right]\left( {{{\left[ x \right]}^2} - 4} \right) \geqslant 0 \cr
& \Rightarrow \left[ x \right]\left( {\left[ x \right] - 2} \right)\left( {\left[ x \right] + 2} \right) \geqslant 0 \cr
& \Rightarrow \left[ x \right] \geqslant - 2{\text{ or }}\left[ x \right]{\text{ lies between }} - 2{\text{ and}}\,0{\text{ i}}{\text{.e}}{\text{., }}\left[ x \right] = - 2,\, - 1\,{\text{or }}0 \cr
& {\text{Now, }}\left[ x \right] \geqslant - 2 \Rightarrow x \geqslant 2......({\text{ii}}) \cr
& \left[ x \right] = - 2 \Rightarrow - 2 \leqslant x < - 1; \cr
& \left[ x \right] = - 1 \Rightarrow - 1 \leqslant x < 0; \cr
& \left[ x \right] = 0 \Rightarrow 0 \leqslant x < 1 \cr
& {\text{Hence, }}\left[ x \right] = - 2,\, - 1,\,0 \Rightarrow - 2 \leqslant x < 1 \cr
& {\text{Hence,}}\,{D_f} = \left[ { - 2,\,1} \right) \cup \left[ {2,\,3} \right) \cr} $$
94.
Let $$f\left( x \right) = \left[ x \right],$$ where $$\left[ x \right]$$ denotes the greatest integer less than or equal to $$x.$$ If $$a = \sqrt {{{2011}^2} + 2012} ,$$ then the value of $$f\left( a \right)$$ is equal to :
95.
The range of the real-valued function $$f\left( x \right) = \sqrt {9 - {x^2}} $$ is :
A
$$\left[ {0,\,3} \right]$$
B
$$\left[ { - 3,\,3} \right]$$
C
$$\left[ { - 3,\,0} \right]$$
D
none of these
Answer :
$$\left[ {0,\,3} \right]$$
$$9 - {x^2} \geqslant 0\,\,\, \Rightarrow - 3 \leqslant x \leqslant 3$$
As $$9 - {x^2}$$ is an even function, the value of $$f\left( x \right)$$ changes in $$0 \leqslant x \leqslant 3$$
Therefore,
$$\max \,f\left( x \right) = \sqrt {9 - 0} = 3{\text{ and }}\min \,f\left( x \right) = \sqrt {9 - 9} = 0$$
96.
The domain of the function $$f\left( x \right) = \sqrt {{{\sec }^{ - 1}}\left\{ {\frac{{1 - \left| x \right|}}{2}} \right\}} $$ is :
97.
The domain of the function $$f\left( x \right) = {}^{16 - x}{C_{2x - 1}} + {}^{20 - 3x}{P_{4x - 5}},$$ where the symbols have their usual meanings, is the set :
A
$$\left\{ {1,\,2,\,3,\,4,\,5} \right\}$$
B
$$\left\{ {2,\,3,\,4,} \right\}$$
C
$$\left\{ {2,\,3} \right\}$$
D
none of these
Answer :
$$\left\{ {2,\,3} \right\}$$
$$\eqalign{
& 16 - x > 0,\,2x - 1 \geqslant 0,\,16 - x \geqslant 2x - 1,\,20 - 3x > 0,\,4x - 5 \geqslant 0,\,20 - 3x \geqslant 4x - 5 \cr
& \Rightarrow x < 16,\,x \geqslant \frac{1}{2},\,x \leqslant \frac{{17}}{3},\,x < \frac{{20}}{3},\,x \geqslant \frac{5}{4},\,x \leqslant \frac{{25}}{7} \cr
& \Rightarrow \frac{5}{4} \leqslant x \leqslant \frac{{25}}{7} \cr} $$
But $$16 - x\, \in \,N.$$ So, $$x$$ must be integer. Hence, $$x=2,\,3$$
98.
The domain of definition of the function $$y = \frac{1}{{{{\log }_{10}}\left( {1 - x} \right)}} + \sqrt {x + 2} $$ is
A
$$\left( { - 3,\, - 2} \right)$$ excluding $$-2.5$$
B
$$\left[ {0,1} \right]$$ excluding 0.5
C
$$\left[ { - 2,1} \right)$$ excluding 0
D
none of these
Answer :
$$\left[ { - 2,1} \right)$$ excluding 0
$$\eqalign{
& y = \frac{1}{{{{\log }_{10}}\left( {1 - x} \right)}} + \sqrt {x + 2} \cr
& y = f\left( x \right) + g\left( x \right) \cr} $$ NOTE THIS STEP: Then domain of given function is $${D_f} \cap {D_g}$$
Now, for domain of $$f\left( x \right) = \frac{1}{{{{\log }_{10}}\left( {1 - x} \right)}}$$
We know it is defined only when $$1 - x > 0$$ and $$1 - x \ne 1 \Rightarrow x < 1\,{\text{and}}\,x \ne 0$$
$$\eqalign{
& \therefore {D_f} = \left( { - \infty ,1} \right) - \left\{ 0 \right\} \cr
& {\text{For}}\,{\text{domain}}\,{\text{of}}\,g\left( x \right) = \sqrt {x + 2} \cr
& x + 2 \geqslant 0 \cr
& \Rightarrow x \geqslant - 2 \cr
& \therefore {D_g} = \left[ { - 2,\infty } \right) \cr} $$
$$\therefore $$ Common domain is $$\left[ { - 2,1} \right) - \left\{ 0 \right\}$$
99.
If $$f\left( x \right)$$ is a periodic function of the period $$k$$ then $$f\left( {kx + a} \right),$$ where $$a$$ is a constant, is a periodic function of the period :
A
$$k$$
B
1
C
$$\frac{k}{a}$$
D
none of these
Answer :
1
$$\eqalign{
& f\left( x \right) = f\left( {x + k} \right) \cr
& \Rightarrow f\left( {kx + a} \right) = f\left( {kx + a + k} \right) = f\left\{ {k\left( {x + 1} \right) + a} \right\} \cr} $$
So, the period is 1.
100.
The domain of $$f\left( x \right) = \sqrt {{{\log }_{{x^2} - 1}}\left( x \right)} $$ is :
$${x^2} - 1 > 0,\,{x^2} - 1 \ne 1,\,x > 0\,{\text{ and }}{\log _{{x^2} - 1}}\left( x \right) \geqslant 0$$
The first three imply $$x > 1{\text{ but }}x \ne \sqrt 2 $$
$$\eqalign{
& {\log _{{x^2} - 1}}\left( x \right) \geqslant 0 \Rightarrow x \geqslant 1{\text{ if }}{x^2} - 1 > 1 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \leqslant 1{\text{ if }}{x^2} - 1 < 1 \cr} $$
Now, $${x^2} - 1 > 1$$ or $$x > \sqrt 2 \,\,\left( {\because x > 1} \right)$$ then $$x \geqslant 1$$ which is true for all $$x > \sqrt 2 $$
$${x^2} - 1 < 1$$ or $$1 < x < \sqrt 2 \,\,\left( {\because x > 1} \right)$$ then $$x \leqslant 1$$ which is not true for any $$x$$ in $$\left( {1,\,\sqrt 2 } \right)$$
This gives no value of $$x.$$ Thus $$x > \sqrt 2 $$