Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

91. Let \[f\left( x \right) = \left\{ \begin{array}{l} 1 + \left| x \right|,\,x < - 1\\ \left[ x \right],\,x \ge - 1 \end{array} \right.\,,\]       where $$\left[ \cdot \right]$$ denotes the greatest integer function. Then $$f\left\{ {f\left( { - 2.3} \right)} \right\}$$   is equal to :

A 4
B 2
C $$-3$$
D 3
Answer :   3

92. If $$f\left( x \right) = \frac{x}{{x - 1}},$$   then $$\frac{{f\left( a \right)}}{{f\left( {a + 1} \right)}}$$   is equal to :

A $$f\left( {{a^2}} \right)$$
B $$f\left( {\frac{1}{a}} \right)$$
C $$f\left( { - a} \right)$$
D $$f\left[ {\frac{{ - a}}{{a - 1}}} \right]$$
Answer :   $$f\left( {{a^2}} \right)$$

93. The domain of the function $$f\left( x \right) = {\log _e}\left\{ {\operatorname{sgn} \left( {9 - {x^2}} \right)} \right\} + \sqrt {{{\left[ x \right]}^3} - 4\left[ x \right]} $$          (where [.] represents the greatest integer function) is :

A $$\left[ { - 2,\,1} \right) \cup \left[ {2,\,3} \right)$$
B $$\left[ { - 4,\,1} \right) \cup \left[ {2,\,3} \right)$$
C $$\left[ {4,\,1} \right) \cup \left[ {2,\,3} \right)$$
D $$\left[ {2,\,1} \right) \cup \left[ {2,\,3} \right)$$
Answer :   $$\left[ { - 2,\,1} \right) \cup \left[ {2,\,3} \right)$$

94. Let $$f\left( x \right) = \left[ x \right],$$   where $$\left[ x \right]$$ denotes the greatest integer less than or equal to $$x.$$ If $$a = \sqrt {{{2011}^2} + 2012} ,$$     then the value of $$f\left( a \right)$$  is equal to :

A 2010
B 2011
C 2012
D 2013
Answer :   2011

95. The range of the real-valued function $$f\left( x \right) = \sqrt {9 - {x^2}} $$    is :

A $$\left[ {0,\,3} \right]$$
B $$\left[ { - 3,\,3} \right]$$
C $$\left[ { - 3,\,0} \right]$$
D none of these
Answer :   $$\left[ {0,\,3} \right]$$

96. The domain of the function $$f\left( x \right) = \sqrt {{{\sec }^{ - 1}}\left\{ {\frac{{1 - \left| x \right|}}{2}} \right\}} $$      is :

A $$\left( { - \infty ,\, - 3} \right] \cup \left[ {3,\, + \infty } \right)$$
B $$\left[ {3,\, + \infty } \right)$$
C $$\phi $$
D $$R$$
Answer :   $$\left( { - \infty ,\, - 3} \right] \cup \left[ {3,\, + \infty } \right)$$

97. The domain of the function $$f\left( x \right) = {}^{16 - x}{C_{2x - 1}} + {}^{20 - 3x}{P_{4x - 5}},$$       where the symbols have their usual meanings, is the set :

A $$\left\{ {1,\,2,\,3,\,4,\,5} \right\}$$
B $$\left\{ {2,\,3,\,4,} \right\}$$
C $$\left\{ {2,\,3} \right\}$$
D none of these
Answer :   $$\left\{ {2,\,3} \right\}$$

98. The domain of definition of the function $$y = \frac{1}{{{{\log }_{10}}\left( {1 - x} \right)}} + \sqrt {x + 2} $$       is

A $$\left( { - 3,\, - 2} \right)$$   excluding $$-2.5$$
B $$\left[ {0,1} \right]$$   excluding 0.5
C $$\left[ { - 2,1} \right)$$  excluding 0
D none of these
Answer :   $$\left[ { - 2,1} \right)$$  excluding 0

99. If $$f\left( x \right)$$  is a periodic function of the period $$k$$ then $$f\left( {kx + a} \right),$$   where $$a$$ is a constant, is a periodic function of the period :

A $$k$$
B 1
C $$\frac{k}{a}$$
D none of these
Answer :   1

100. The domain of $$f\left( x \right) = \sqrt {{{\log }_{{x^2} - 1}}\left( x \right)} $$     is :

A $$\left( {\sqrt 2 ,\, + \infty } \right)$$
B $$\left( {0,\, + \infty } \right)$$
C $$\left( {1,\, + \infty } \right)$$
D none of these
Answer :   $$\left( {\sqrt 2 ,\, + \infty } \right)$$