113.
If a function $$F$$ is such that $$F\left( 0 \right) = 2,\,F\left( 1 \right) = 3,\,F\left( {x + 2} \right) = 2F\left( x \right) - F\left( {x + 1} \right)$$ for $$x \geqslant 0,$$ then $$F\left( 5 \right)$$ is equal to :
114.
$$f\left( x \right) = x + \sqrt {{x^2}} $$ is a function from $$R \to R.$$ Then $$f\left( x \right)$$ is :
A
injective
B
surjective
C
bijective
D
none of these
Answer :
none of these
$$f\left( x \right) = x + \left| x \right|.$$ Clearly, $$f\left( { - 1} \right) = f\left( { - 2} \right) = ...... = 0$$
So, $$f$$ is many-one.
Also, $$f\left( x \right) \geqslant 0$$ for all $$x.$$ So, it is not surjective.
115.
If $$f:R \to R$$ satisfies $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right),$$ for all $$x,y \in R$$ and $$f\left( 1 \right) = 7,$$ then $$\sum\limits_{r = 1}^n f \left( r \right)$$ is
A
$$\frac{{7n\left( {n + 1} \right)}}{2}$$
B
$$\frac{{7n}}{2}$$
C
$$\frac{{7\left( {n + 1} \right)}}{2}$$
D
$$7n + \left( {n + 1} \right).$$
Answer :
$$\frac{{7n\left( {n + 1} \right)}}{2}$$
$$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right).$$ Function should be $$f\left( x \right) = mx$$
$$\eqalign{
& f\left( 1 \right) = 7;\,\,\therefore m = 7,f\left( x \right) = 7x \cr
& \sum\limits_{r = 1}^n f \left( r \right) = 7\sum\limits_1^n r = \frac{{7n\left( {n + 1} \right)}}{2} \cr} $$
116.
If $$f\left( x \right) = \frac{1}{{\sqrt {\left( {x + 1} \right)\left( {{e^x} - 1} \right)\left( {x - 4} \right)\left( {x + 5} \right)\left( {x - 6} \right)} }}$$ then the domain of $$f\left( x \right)$$ is :
117.
Let $$f\left( x \right) = x,\,g\left( x \right) = \frac{1}{x}$$ and $$h\left( x \right) = f\left( x \right)g\left( x \right).$$ Then, $$h\left( x \right) = 1$$ if and only if :
A
$$x$$ is a real number
B
$$x$$ is a rational number
C
$$x$$ is an irrational number
D
$$x$$ is a non-zero real number
Answer :
$$x$$ is a non-zero real number
$$\eqalign{
& D\left( f \right) = R,\,D\left( g \right) = R - \left\{ 0 \right\} \cr
& \therefore \,D\left( h \right) = R - \left\{ 0 \right\}{\text{ and }}h\left( x \right) = f\left( x \right)g\left( x \right) = x \times \frac{1}{x} = 1 \cr
& \therefore \,h\left( x \right) = 1{\text{ if and only if }}x\, \in \,R - \left\{ 0 \right\} \cr} $$
118.
Let $$f,g$$ and $$h$$ be real-valued functions defined on the interval $$\left[ {0,1} \right]$$ by $$f\left( x \right) = {e^{{x^2}}} + {e^{ - x^2}},g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}}$$ and $$h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}}.$$ If $$a,b$$ and $$c$$ denote, respectively, the absolute maximum of $$f,g$$ and $$h$$ on $$\left[ {0,1} \right],$$ then
A
$$a = b\,{\text{and}}\,c \ne b$$
B
$$a = c\,{\text{and}}\,a \ne b$$
C
$$a \ne b\,{\text{and}}\,c \ne b$$
D
$$a = b\,{\text{ = }}\,c$$
Answer :
$$a = b\,{\text{ = }}\,c$$
$$f\left( x \right) = {e^{{x^2}}} + {e^{ - {x^2}}} \Rightarrow f'\left( x \right) = 2x\left( {{e^{{x^2}}} - {e^{ - {x^2}}}} \right) \geqslant 0,\forall {\text{x}} \in \left[ {0,1} \right]$$
$$\therefore f\left( x \right)$$ is an increasing function on $$\left[ {0,1} \right]$$
$$\eqalign{
& {\text{Hence}}\,{f_{\max }} = f\left( 1 \right) = e + \frac{l}{e} = a \cr
& g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}} \cr
& \Rightarrow g'\left( x \right) = \left( {2{x^2} + 1} \right){e^{{x^2}}} - 2x{e^{ - {x^2}}} \geqslant 0,\forall x \in \left[ {0,1} \right] \cr} $$
$$\therefore g\left( x \right)$$ is an increasing function on $$\left[ {0,1} \right]$$
$$\eqalign{
& \therefore {g_{\max }} = g\left( 1 \right) = e + \frac{1}{e} = b \cr
& h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}} \cr
& h'\left( x \right) = 2x\left[ {{e^{{x^2}}}\left( {1 + {x^2}} \right) - {e^{ - {x^2}}}} \right] \geqslant 0,\forall x \in \left[ {0,1} \right] \cr} $$
$$\therefore h\left( x \right)$$ is an increasing function on $$\left[ {0,1} \right]$$
$$\therefore {h_{\max }} = h\left( 1 \right) = e + \frac{1}{e} = c$$
Hence $$a = b = c$$
119.
The function $$f\left( x \right) = x - \left[ x \right] + \cos \,x,$$ where $$\left[ x \right] = $$ the greatest integer less than or equal to $$x,$$ is a :
A
periodic function of indeterminate period
B
periodic function of period $${2\pi }$$
C
non-periodic function
D
periodic function of period 1
Answer :
non-periodic function
$$x - \left[ x \right]$$ has the period 1 and $$\cos \,x$$ has the period $$2\pi .$$ Clearly, 1 and $$2\pi $$ do not have a common multiple.
120.
The largest interval lying in $$\left( {\frac{{ - \pi }}{2},\frac{\pi }{2}} \right)$$ for which the function, $$f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right),$$ is defined, is
A
$$\left[ { - \frac{\pi }{4},\frac{\pi }{2}} \right)$$
B
$$\left[ {0,\frac{\pi }{2}} \right)$$
C
$$\left[ {0,\pi } \right]$$
D
$$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$