Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

111. The domain of the function $$f\left( x \right) = {\log _{3 + x}}\left( {{x^2} - 1} \right)$$     is :

A $$\left( { - 3,\, - 1} \right) \cup \left( {1,\,\infty } \right)$$
B $$\left[ { - 3,\, - 1} \right) \cup \left[ {1,\,\infty } \right)$$
C $$\left( { - 3,\, - 2} \right) \cup \left( { - 2,\, - 1} \right) \cup \left( {1,\,\infty } \right)$$
D $$\left[ { - 3,\, - 2} \right) \cup \left( { - 2,\, - 1} \right) \cup \left[ {1,\,\infty } \right)$$
Answer :   $$\left( { - 3,\, - 2} \right) \cup \left( { - 2,\, - 1} \right) \cup \left( {1,\,\infty } \right)$$

112. The domain of the function $$f\left( x \right) = \sqrt {x - \sqrt {1 - {x^2}} } $$     is :

A $$\left[ { - 1,\, - \frac{1}{{\sqrt 2 }}} \right] \cup \left[ {\frac{1}{{\sqrt 2 }},\,1} \right]$$
B $$\left[ { - 1,\,1} \right]$$
C $$\left( { - \infty ,\, - \frac{1}{2}} \right] \cup \left[ {\frac{1}{{\sqrt 2 }},\, + \infty } \right)$$
D $$\left[ {\frac{1}{{\sqrt 2 }},\,1} \right]$$
Answer :   $$\left[ {\frac{1}{{\sqrt 2 }},\,1} \right]$$

113. If a function $$F$$ is such that $$F\left( 0 \right) = 2,\,F\left( 1 \right) = 3,\,F\left( {x + 2} \right) = 2F\left( x \right) - F\left( {x + 1} \right)$$           for $$x \geqslant 0,$$  then $$F\left( 5 \right)$$  is equal to :

A $$ - 7$$
B $$ - 3$$
C $$17$$
D $$13$$
Answer :   $$13$$

114. $$f\left( x \right) = x + \sqrt {{x^2}} $$    is a function from $$R \to R.$$   Then $$f\left( x \right)$$  is :

A injective
B surjective
C bijective
D none of these
Answer :   none of these

115. If $$f:R \to R$$   satisfies $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right),$$     for all $$x,y \in R$$  and $$f\left( 1 \right) = 7,$$   then $$\sum\limits_{r = 1}^n f \left( r \right)$$   is

A $$\frac{{7n\left( {n + 1} \right)}}{2}$$
B $$\frac{{7n}}{2}$$
C $$\frac{{7\left( {n + 1} \right)}}{2}$$
D $$7n + \left( {n + 1} \right).$$
Answer :   $$\frac{{7n\left( {n + 1} \right)}}{2}$$

116. If $$f\left( x \right) = \frac{1}{{\sqrt {\left( {x + 1} \right)\left( {{e^x} - 1} \right)\left( {x - 4} \right)\left( {x + 5} \right)\left( {x - 6} \right)} }}$$          then the domain of $$f\left( x \right)$$  is :

A $$\left( { - \infty ,\, - 5} \right) \cup \left( { - 1,\,4} \right) \cup \left( {6,\,\infty } \right)$$
B $$\left( { - \infty ,\, - 5} \right) \cup \left( { - 1,\,0} \right) \cup \left( {0,\,4} \right) \cup \left( {6,\,\infty } \right)$$
C $$\left( { - 5,\, - 1} \right) \cup \left( {0,\,4} \right) \cup \left( {6,\,\infty } \right)$$
D none of these
Answer :   $$\left( { - 5,\, - 1} \right) \cup \left( {0,\,4} \right) \cup \left( {6,\,\infty } \right)$$

117. Let $$f\left( x \right) = x,\,g\left( x \right) = \frac{1}{x}$$     and $$h\left( x \right) = f\left( x \right)g\left( x \right).$$    Then, $$h\left( x \right) = 1$$   if and only if :

A $$x$$ is a real number
B $$x$$ is a rational number
C $$x$$ is an irrational number
D $$x$$ is a non-zero real number
Answer :   $$x$$ is a non-zero real number

118. Let $$f,g$$  and $$h$$ be real-valued functions defined on the interval $$\left[ {0,1} \right]$$   by $$f\left( x \right) = {e^{{x^2}}} + {e^{ - x^2}},g\left( x \right) = x{e^{{x^2}}} + {e^{ - {x^2}}}$$        and $$h\left( x \right) = {x^2}{e^{{x^2}}} + {e^{ - {x^2}}}.$$     If $$a,b$$  and $$c$$ denote, respectively, the absolute maximum of $$f,g$$  and $$h$$ on $$\left[ {0,1} \right],$$   then

A $$a = b\,{\text{and}}\,c \ne b$$
B $$a = c\,{\text{and}}\,a \ne b$$
C $$a \ne b\,{\text{and}}\,c \ne b$$
D $$a = b\,{\text{ = }}\,c$$
Answer :   $$a = b\,{\text{ = }}\,c$$

119. The function $$f\left( x \right) = x - \left[ x \right] + \cos \,x,$$     where $$\left[ x \right] = $$  the greatest integer less than or equal to $$x,$$ is a :

A periodic function of indeterminate period
B periodic function of period $${2\pi }$$
C non-periodic function
D periodic function of period 1
Answer :   non-periodic function

120. The largest interval lying in $$\left( {\frac{{ - \pi }}{2},\frac{\pi }{2}} \right)$$   for which the function, $$f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right),$$         is defined, is

A $$\left[ { - \frac{\pi }{4},\frac{\pi }{2}} \right)$$
B $$\left[ {0,\frac{\pi }{2}} \right)$$
C $$\left[ {0,\pi } \right]$$
D $$\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$$
Answer :   $$\left[ {0,\frac{\pi }{2}} \right)$$