Function MCQ Questions & Answers in Calculus | Maths

Learn Function MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

151. The graph of the function $$y = f\left( x \right)$$   is symmetrical about the line $$x=2.$$  Then :

A $$f\left( {x + 2} \right) = f\left( {x - 2} \right)$$
B $$f\left( {2 + x} \right) = f\left( {2 - x} \right)$$
C $$f\left( x \right) = f\left( { - x} \right)$$
D none of these
Answer :   $$f\left( {2 + x} \right) = f\left( {2 - x} \right)$$

152. The domain of the function $$f\left( x \right) = {\sin ^{ - 1}}\left( {x + \left[ x \right]} \right)$$     where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :

A $$\left[ {0,\,1} \right)$$
B $$\left[ { - 1,\,1} \right]$$
C $$\left( { - 1,\,0} \right)$$
D none of these
Answer :   $$\left[ {0,\,1} \right)$$

153. A function $$f$$ from the set of natural numbers to integers defined by \[f\left( n \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{{n - 1}}{2},{\rm{when}}\,{\rm{ }}n{\rm{ }}\,{\rm{is}}\,{\rm{ odd}}}\\ { - \frac{n}{2},{\rm{when }}\,n{\rm{ }}\,{\rm{is }}\,{\rm{even}}} \end{array}} \right.\]       is

A neither one -one nor onto
B one-one but not onto
C onto but not one-one
D one-one and onto both.
Answer :   one-one and onto both.

154. If $$f\left( x \right) = {e^{ - x}},$$   then $$\frac{{f\left( { - a} \right)}}{{f\left( b \right)}}$$  is equal to :

A $$f\left( {a + b} \right)$$
B $$f\left( {a - b} \right)$$
C $$f\left( { - a + b} \right)$$
D $$f\left( { - a - b} \right)$$
Answer :   $$f\left( { - a - b} \right)$$

155. Let $$f:\left\{ {x,\,y,\,z} \right\} \to \left\{ {a,\,b,\,c} \right\}$$     be a one-one function and only one of the conditions (i) $$f\left( x \right) \ne b,$$   (ii) $$f\left( y \right) = b,$$   (iii) $$f\left( z \right) \ne a$$   is true then the function $$f$$ is given by the set :

A $$\left\{ {\left( {x,\,a} \right)\left( {y,\,b} \right)\left( {z,\,c} \right)} \right\}$$
B $$\left\{ {\left( {x,\,a} \right)\left( {y,\,c} \right)\left( {z,\,b} \right)} \right\}$$
C $$\left\{ {\left( {x,\,b} \right)\left( {y,\,a} \right)\left( {z,\,c} \right)} \right\}$$
D $$\left\{ {\left( {x,\,c} \right)\left( {y,\,b} \right)\left( {z,\,a} \right)} \right\}$$
Answer :   $$\left\{ {\left( {x,\,b} \right)\left( {y,\,a} \right)\left( {z,\,c} \right)} \right\}$$

156. If $$f\left( x \right) = {\sin ^2}x + {\sin ^2}\left( {x + \frac{\pi }{3}} \right) + \cos \,x \cdot \cos \left( {x + \frac{\pi }{3}} \right)$$          and $$g\left( {\frac{5}{4}} \right) = 1$$   then $$\left( {g\,o\,f} \right)\left( x \right)$$   is :

A a polynomial of the first degree in $$\sin \,x,\,\cos \,x$$
B a constant function
C a polynomial of the second degree in $$\sin \,x,\,\cos \,x$$
D none of these
Answer :   a constant function

157. The domain of the function $$f\left( x \right) = {\log _2}\left( { - {{\log }_{\frac{1}{2}}}\left( {1 + \frac{1}{{{x^{\frac{1}{4}}}}}} \right) - 1} \right)$$       is :

A $$\left( {0,\,1} \right)$$
B $$\left( {0,\,1} \right]$$
C $$\left[ {1,\,\infty } \right)$$
D $$\left( {1,\,\infty } \right)$$
Answer :   $$\left( {0,\,1} \right)$$

158. Let $$f:R \to R$$   be a function such that $$f\left( x \right) = {x^3} + {x^2} + 3x + \sin \,x.$$      Then :

A $$f$$ is one-one and into
B $$f$$ is one-one and onto
C $$f$$ is many-one and into
D $$f$$ is many-one and onto
Answer :   $$f$$ is one-one and onto

159. The domain of the function $$f\left( x \right) = \sqrt {x - \sqrt {1 - {x^2}} } $$     is :

A $$\left[ { - 1,\, - \frac{1}{{\sqrt 2 }}} \right] \cup \left[ {\frac{1}{{\sqrt 2 }},\,1} \right]$$
B $$\left[ { - 1,\,1} \right]$$
C $$\left( { - \infty ,\, - \frac{1}{2}} \right] \cup \left[ {\frac{1}{{\sqrt 2 }},\, + \infty } \right)$$
D $$\left[ {\frac{1}{{\sqrt 2 }},\,1} \right]$$
Answer :   $$\left[ {\frac{1}{{\sqrt 2 }},\,1} \right]$$

160. If $$f\left( x \right) = \cos \left( {\ln x} \right),$$    then $$f\left( x \right)f\left( y \right) - \frac{1}{2}\left[ {f\left( {\frac{x}{y}} \right) + f\left( {xy} \right)} \right]$$       has the value

A -1
B $$\frac{1}{2}$$
C -2
D none of these
Answer :   none of these