If $$f\left( x \right) = f\left( { - x} \right),$$ i.e., $$f\left( {0 + x} \right) = f\left( {0 - x} \right),$$ the graph is symmetrical about $$x=0.$$ Therefore, the graph is symmetrical about $$x=2$$ if $$f\left( {2 + x} \right) = f\left( {2 - x} \right).$$
152.
The domain of the function $$f\left( x \right) = {\sin ^{ - 1}}\left( {x + \left[ x \right]} \right)$$ where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :
A
$$\left[ {0,\,1} \right)$$
B
$$\left[ { - 1,\,1} \right]$$
C
$$\left( { - 1,\,0} \right)$$
D
none of these
Answer :
$$\left[ {0,\,1} \right)$$
$$\eqalign{
& {\text{We know that the range of }}{\sin ^{ - 1}}{\text{ is }}\left[ {\frac{{ - \pi }}{2},\,\frac{\pi }{2}} \right] \cr
& {\text{and domain is }}\left[ { - 1,\,1} \right] \cr
& {\text{Now in }}f\left( x \right) = \sin \left( {x + \left[ x \right]} \right) \cr
& {\text{The input should be in the domain }}\left[ { - 1,\,1} \right] \cr
& x + \left[ x \right] \geqslant - 1 \cr
& \Rightarrow x \geqslant 0 \cr
& {\text{and }}x + \left[ x \right] \leqslant 1 \cr
& \Rightarrow x \leqslant 1 \cr
& {\text{However, }}\left[ x \right]{\text{ is discontinuous at }}x = 1 \cr
& {\text{Hence domain of }}f\left( x \right) = {\sin ^{ - 1}}\left( {x + \left[ x \right]} \right){\text{ is }}\left[ {0,\,1} \right) \cr} $$
153.
A function $$f$$ from the set of natural numbers to integers defined by \[f\left( n \right) = \left\{ {\begin{array}{*{20}{c}}
{\frac{{n - 1}}{2},{\rm{when}}\,{\rm{ }}n{\rm{ }}\,{\rm{is}}\,{\rm{ odd}}}\\
{ - \frac{n}{2},{\rm{when }}\,n{\rm{ }}\,{\rm{is }}\,{\rm{even}}}
\end{array}} \right.\] is
A
neither one -one nor onto
B
one-one but not onto
C
onto but not one-one
D
one-one and onto both.
Answer :
one-one and onto both.
We have $$f:N \to I$$
If $$x$$ and $$y$$ are two even natural numbers, then $$f\left( x \right) = f\left( y \right) \Rightarrow \frac{{ - x}}{2} = \frac{{ - y}}{2} \Rightarrow x = y$$
Again if $$x$$ and $$y$$ are two odd natural numbers then $$f\left( x \right) = f\left( y \right) \Rightarrow \frac{{x - 1}}{2} = \frac{{y - 1}}{2} \Rightarrow x = y$$
$$\therefore f$$ is onto.
Also each negative integer is an image of even natural number and each positive integer is an image of odd natural number.
$$\therefore f$$ is onto.
Hence $$f$$ is one one and onto both.
154.
If $$f\left( x \right) = {e^{ - x}},$$ then $$\frac{{f\left( { - a} \right)}}{{f\left( b \right)}}$$ is equal to :
155.
Let $$f:\left\{ {x,\,y,\,z} \right\} \to \left\{ {a,\,b,\,c} \right\}$$ be a one-one function and only one of the conditions (i) $$f\left( x \right) \ne b,$$ (ii) $$f\left( y \right) = b,$$ (iii) $$f\left( z \right) \ne a$$ is true then the function $$f$$ is given by the set :
A
$$\left\{ {\left( {x,\,a} \right)\left( {y,\,b} \right)\left( {z,\,c} \right)} \right\}$$
B
$$\left\{ {\left( {x,\,a} \right)\left( {y,\,c} \right)\left( {z,\,b} \right)} \right\}$$
C
$$\left\{ {\left( {x,\,b} \right)\left( {y,\,a} \right)\left( {z,\,c} \right)} \right\}$$
D
$$\left\{ {\left( {x,\,c} \right)\left( {y,\,b} \right)\left( {z,\,a} \right)} \right\}$$
$$\eqalign{
& f\left( x \right) \ne b \Rightarrow \cr
& f\left( x \right) = a,\,f\left( y \right) = c,\,f\left( z \right) = b\,\,\left( {{\text{uses (iii) also}}} \right) \cr
& f\left( x \right) = a,\,f\left( y \right) = b,\,f\left( z \right) = c\,\,\left( {{\text{uses (ii) also}}} \right) \cr
& f\left( x \right) = c,\,f\left( y \right) = a,\,f\left( z \right) = b\,\,\left( {{\text{uses (iii) also}}} \right) \cr
& f\left( x \right) = c,\,f\left( y \right) = b,\,f\left( z \right) = a\,\,\left( {{\text{uses (ii) also}}} \right) \cr
& f\left( y \right) = b \Rightarrow \cr
& f\left( x \right) = a,\,f\left( y \right) = b,\,f\left( z \right) = c\,\,\left( {{\text{uses (i) also}}} \right) \cr
& f\left( x \right) = c,\,f\left( y \right) = b,\,f\left( z \right) = a\,\,\left( {{\text{uses (i) also}}} \right) \cr
& f\left( z \right) \ne a \Rightarrow \cr
& f\left( x \right) = a,\,f\left( y \right) = b,\,f\left( z \right) = c\,\,\left( {{\text{uses (i) also}}} \right) \cr
& f\left( x \right) = a,\,f\left( y \right) = c,\,f\left( z \right) = b\,\,\left( {{\text{uses (i) also}}} \right) \cr
& f\left( x \right) = b,\,f\left( y \right) = a,\,f\left( z \right) = c\,\,\left( {{\text{possible}}} \right) \cr
& f\left( x \right) = c,\,f\left( y \right) = a,\,f\left( z \right) = b\,\,\left( {{\text{uses (i) also}}} \right) \cr} $$
156.
If $$f\left( x \right) = {\sin ^2}x + {\sin ^2}\left( {x + \frac{\pi }{3}} \right) + \cos \,x \cdot \cos \left( {x + \frac{\pi }{3}} \right)$$ and $$g\left( {\frac{5}{4}} \right) = 1$$ then $$\left( {g\,o\,f} \right)\left( x \right)$$ is :
A
a polynomial of the first degree in $$\sin \,x,\,\cos \,x$$
B
a constant function
C
a polynomial of the second degree in $$\sin \,x,\,\cos \,x$$
D
none of these
Answer :
a constant function
On simplification, $$f\left( x \right) = \frac{5}{4} = $$ constant. So, $$g\left\{ {f\left( x \right)} \right\} = g\left( {\frac{5}{4}} \right) = 1$$ (from the question).
157.
The domain of the function $$f\left( x \right) = {\log _2}\left( { - {{\log }_{\frac{1}{2}}}\left( {1 + \frac{1}{{{x^{\frac{1}{4}}}}}} \right) - 1} \right)$$ is :
158.
Let $$f:R \to R$$ be a function such that $$f\left( x \right) = {x^3} + {x^2} + 3x + \sin \,x.$$ Then :
A
$$f$$ is one-one and into
B
$$f$$ is one-one and onto
C
$$f$$ is many-one and into
D
$$f$$ is many-one and onto
Answer :
$$f$$ is one-one and onto
$$f\left( x \right) = x\left\{ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{{11}}{4}} \right\} + \sin \,x.$$
Clearly $$x\left\{ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{{11}}{4}} \right\}$$ increases with $$x$$ and its value changes over $$R.$$ Also, $$ - 1 \leqslant \sin \,x \leqslant 1$$
So, the range of $$f=R$$
Hence, $$f$$ is onto and one-one.
159.
The domain of the function $$f\left( x \right) = \sqrt {x - \sqrt {1 - {x^2}} } $$ is :
160.
If $$f\left( x \right) = \cos \left( {\ln x} \right),$$ then $$f\left( x \right)f\left( y \right) - \frac{1}{2}\left[ {f\left( {\frac{x}{y}} \right) + f\left( {xy} \right)} \right]$$ has the value