171.
Find the domain of the function $$f\left( x \right) = \sqrt {\left( {\frac{2}{{{x^2} - x + 1}} - \frac{1}{{x + 1}} - \frac{{2x - 1}}{{{x^3} + 1}}} \right)} $$
A
$$\left( { - \infty ,\,2} \right] - \left\{ { - 1} \right\}$$
B
$$\left( { - \infty ,\,2} \right)$$
C
$$\left] { - 1,\, - 2} \right]$$
D
none of these
Answer :
$$\left( { - \infty ,\,2} \right] - \left\{ { - 1} \right\}$$
View Solution
$$\eqalign{
& f\left( x \right) = \sqrt {\left( {\frac{2}{{{x^2} - x + 1}} - \frac{1}{{x + 1}} - \frac{{2x - 1}}{{{x^3} + 1}}} \right)} \cr
& {\text{We must have }}\frac{2}{{{x^2} - x + 1}} - \frac{1}{{x + 1}} - \frac{{2x - 1}}{{{x^3} + 1}} \geqslant 0 \cr
& {\text{or }}\frac{{2\left( {x + 1} \right) - \left( {{x^2} - x + 1} \right) - \left( {2x - 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \geqslant 0 \cr
& {\text{or }}\frac{{ - \left( {{x^2} - x - 2} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \geqslant 0 \cr
& {\text{or }}\frac{{ - \left( {x - 2} \right)\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \geqslant 0 \cr
& {\text{or }}\frac{{2 - x}}{{{x^2} - x + 1}} \geqslant 0,{\text{ where}}\,x \ne - 1 \cr
& {\text{or }}2 - x \geqslant 0,\,x \ne - 1\,\,\,\,\left( {{\text{as }}{x^2} - x + 1 > 0\,\forall \,x\, \in \,R} \right) \cr
& {\text{or }}x \leqslant 2,\,x \ne - 1 \cr} $$
Hence, domain of the function is $$\left( { - \infty ,\, - 1} \right) \cup \left( { - 1,\,2} \right].$$
$${\text{or }}\left( { - \infty ,\,2} \right] - \left\{ { - 1} \right\}$$
172.
A function $$f$$ is defined by $$f\left( x \right) = x + \frac{1}{x}.$$ Consider the following :
$$\eqalign{
& \left( 1 \right)\,{\left( {f\left( x \right)} \right)^2} = f\left( {{x^2}} \right) + 2 \cr
& \left( 2 \right)\,{\left( {f\left( x \right)} \right)^3} = f\left( {{x^3}} \right) + 3\,f\left( x \right) \cr} $$
Which of the above is/are correct ?
A
1 only
B
2 only
C
Both 1 and 2
D
Neither 1 nor 2
Answer :
Both 1 and 2
View Solution
$$\eqalign{
& f\left( {{x^2}} \right) + 2 = {x^2} + \frac{1}{{{x^2}}} + 2 \cr
& = {\left( {x + \frac{1}{x}} \right)^2} \cr
& = {\left\{ {f\left( x \right)} \right\}^2}\,{\text{and}} \cr
& {\text{ }}f\left( {{x^3}} \right) + 3\,f\left( x \right) = {x^3} + \frac{1}{{{x^3}}} + 3\left( {x + \frac{1}{x}} \right) \cr
& = {\left( {x + \frac{1}{x}} \right)^3} \cr
& = {\left\{ {f\left( x \right)} \right\}^3} \cr} $$
Thus, both 1 and 2 are correct.
173.
The domain of the function $$f\left( x \right) = \frac{1}{{\sqrt {\left| x \right| - x} }}$$ is :
A
$$\left( {0,\,\infty } \right)$$
B
$$\left( { - \infty ,\,0} \right)$$
C
$$\left( { - \infty ,\,\infty } \right) - \left\{ 0 \right\}$$
D
$$\left( { - \infty ,\,\infty } \right)$$
Answer :
$$\left( { - \infty ,\,0} \right)$$
View Solution
$$\eqalign{
& f\left( x \right) = \frac{1}{{\sqrt {\left| x \right| - x} }}{\text{, define if }}\left| x \right| - x > 0 \cr
& \Rightarrow \left| x \right| > x,\, \Rightarrow x < 0 \cr
& {\text{Hence, domain of }}f\left( x \right){\text{ is }}\left( { - \infty ,\,0} \right) \cr} $$