3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

141. A tetrahedron has vertices at $$O\left( {0,\,0,\,0} \right),\,A\left( {1,\,2,\,1} \right),\,B\left( {2,\,1,\,3} \right)$$       and $$C\left( { - 1,\,1,\,2} \right).$$   Then the angle between the faces $$OAB$$  and $$ABC$$  will be :

A $${90^ \circ }$$
B $${\cos ^{ - 1}}\left( {\frac{{19}}{{35}}} \right)$$
C $${\cos ^{ - 1}}\left( {\frac{{17}}{{31}}} \right)$$
D $${30^ \circ }$$
Answer :   $${\cos ^{ - 1}}\left( {\frac{{19}}{{35}}} \right)$$

142. If $$\vec a,\,\vec b,\,\vec c$$   and $$\vec d$$ are unit vectors such that $$\left( {\vec a \times \vec b} \right).\left( {\vec c \times \vec d} \right) = 1$$     and $$\vec a.\vec c = \frac{1}{2},$$  then :

A $$\vec a,\,\vec b,\,\vec c$$  are non-coplanar
B $$\vec b,\,\vec c,\,\vec d$$  are non-coplanar
C $$\vec b,\,\vec d$$  are non-parallel
D $$\vec a,\,\vec d$$  are parallel and $$\vec b,\,\vec c$$ are parallel
Answer :   $$\vec b,\,\vec d$$  are non-parallel

143. If the $${p^{th}},\,{q^{th}}$$   and $${r^{th}}$$ terms of a G.P. are positive numbers $$a,\,b$$  and $$c$$ respectively, then find the angle between the vectors $$\log \,{a^2}\hat i + \log \,{b^2}\hat j + \log \,{c^2}\hat k$$       and $$\left( {q - r} \right)\hat i + \left( {r - p} \right)\hat j + \left( {p - q} \right)\hat k$$

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{2}$$

144. If the vertices of a tetrahedron have the position vectors $$\overrightarrow 0 ,\,\overrightarrow i + \overrightarrow j ,\,2\overrightarrow j - \overrightarrow k $$     and $$\overrightarrow i + \overrightarrow k $$   then the volume of the tetrahedron is :

A $$\frac{1}{6}$$
B $$1$$
C $$2$$
D none of these
Answer :   $$\frac{1}{6}$$

145. A force $$\overrightarrow F = 3\hat i + 2\hat j - 4\hat k$$     is applied at the point $$\left( {1,\, - 1,\,2} \right).$$   What is the moment of the force about the point $$\left( {2,\, - 1,\,3} \right)\,?$$

A $$\hat i + 4\hat j + 4\hat k$$
B $$2\hat i + \hat j + 2\hat k$$
C $$2\hat i - 7\hat j - 2\hat k$$
D $$2\hat i + 4\hat j - \hat k$$
Answer :   $$2\hat i - 7\hat j - 2\hat k$$

146. The components of a vector $$\overrightarrow a $$ along and perpendicular to a non-zero vector $$\overrightarrow b $$ are :

A $$\left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\vec b} \right|}^2}}}} \right)\overrightarrow b \& \overrightarrow a - \left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\vec b} \right|}^2}}}} \right)\overrightarrow b $$
B $$\left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}}} \right)\overrightarrow b \& \overrightarrow a + \left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}}} \right)\overrightarrow b $$
C $$\left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\overrightarrow a } \right|}^2}}}} \right)\overrightarrow a - \left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\vec b} \right|}^2}}}} \right)\overrightarrow a $$
D None of these
Answer :   $$\left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\vec b} \right|}^2}}}} \right)\overrightarrow b \& \overrightarrow a - \left( {\frac{{\overrightarrow a .\overrightarrow b }}{{{{\left| {\vec b} \right|}^2}}}} \right)\overrightarrow b $$

147. A vector has components $$2p$$  and $$1$$ with respect to a rectangular cartesian system. The axes are rotated through an angle $$\alpha $$ about the origin in the anticlockwise sense. If the vector has components $$p + 1$$  and $$1$$ with respect to the new system then :

A $$p = 1,\, - \frac{1}{3}$$
B $$p = 0$$
C $$p = - 1,\,\frac{1}{3}$$
D $$p = 1,\, - 1$$
Answer :   $$p = 1,\, - \frac{1}{3}$$

148. Let $$\vec a,\,\vec b$$  and $$\vec c$$ be non-zero vectors such that $$\left( {\vec a \times \vec b} \right) \times \vec c = \frac{1}{3}\left| {\vec b} \right|\left| {\vec c} \right|\,\vec a.$$      If $$\theta $$ is the acute angle between the vectors $${\vec b}$$ and $${\vec c},$$  then $$\sin \,\theta $$  equals :

A $$\frac{{2\sqrt 2 }}{3}$$
B $$\frac{{\sqrt 2 }}{3}$$
C $$\frac{2}{3}$$
D $$\frac{1}{3}$$
Answer :   $$\frac{{2\sqrt 2 }}{3}$$

149. $${\left( {\overrightarrow a \times \overrightarrow b } \right)^2} + {\left( {\overrightarrow a .\overrightarrow b } \right)^2}$$     is equal to :

A $$0$$
B $${\left| {\overrightarrow a } \right|^2}{\left| {\overrightarrow b } \right|^2}$$
C $${\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2}$$
D $$1$$
Answer :   $${\left| {\overrightarrow a } \right|^2}{\left| {\overrightarrow b } \right|^2}$$

150. The points $$\left( {0,\,0,\,0} \right),\,\left( {0,\,2,\,0} \right),\,\left( {1,\,0,\,0} \right),\,\left( {0,\,0,\,4} \right)$$        are :

A coplanar
B vertices of a parallelogram
C vertices of a rectangle
D on a sphere
Answer :   on a sphere