3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

191. let $$\vec a = \hat i - \hat j,\,\vec b = \hat j - \hat k,\,\vec c = \hat k - \hat i.$$       if $${\vec d}$$ is a unit vector such that $$\vec a.\vec d = 0 = \left[ {\vec b\,\vec c\,\vec d} \right],$$     then $${\vec d}$$ equals :

A $$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$
B $$ \pm \frac{{\hat i + \hat j - \hat k}}{{\sqrt 3 }}$$
C $$ \pm \frac{{\hat i + \hat j + \hat k}}{{\sqrt 3 }}$$
D $$ \pm \,\hat k$$
Answer :   $$ \pm \frac{{\hat i + \hat j - 2\hat k}}{{\sqrt 6 }}$$

192. If $$\overrightarrow r = 3\overrightarrow i + 2\overrightarrow j - 5\overrightarrow k ,\,\overrightarrow a = 2\overrightarrow i - \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 3\overrightarrow j - 2\overrightarrow k $$            and $$\overrightarrow c = - 2\overrightarrow i + \overrightarrow j - 3\overrightarrow k $$     such that $$\overrightarrow r = \lambda \overrightarrow a + \mu \overrightarrow b + \nu \overrightarrow c $$     then :

A $$\mu ,\,\frac{\lambda }{2},\,\nu $$   are in AP
B $$\lambda ,\,\mu ,\,\nu $$   are in AP
C $$\lambda ,\,\mu ,\,\nu $$   are in HP
D $$\mu ,\,\lambda ,\,\nu $$   are in GP
Answer :   $$\mu ,\,\frac{\lambda }{2},\,\nu $$   are in AP

193. Consider the parallelepiped with side $$\overrightarrow a = 3\hat i + 2\hat j + \hat k,\,\overrightarrow b = \hat i + \hat j + 2\hat k$$       and $$\overrightarrow c = \hat i + 3\hat j + 3\hat k$$    then the angle between $$\overrightarrow a $$ and the plane containing the face determined by $$\overrightarrow b $$ and $$\overrightarrow c $$ is :

A $${\sin ^{ - 1}}\frac{1}{3}$$
B $${\cos ^{ - 1}}\frac{9}{{14}}$$
C $${\sin ^{ - 1}}\frac{9}{{14}}$$
D $${\sin ^{ - 1}}\frac{2}{3}$$
Answer :   $${\sin ^{ - 1}}\frac{9}{{14}}$$

194. Constant forces $$\overrightarrow P = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k ,\,\overrightarrow Q = - \overrightarrow i + 3\overrightarrow j - \overrightarrow k $$        and $$\overrightarrow R = 2\overrightarrow i - 4\overrightarrow j + 3\overrightarrow k $$     act on a particle. The work done when the particle is displaced from a point $$A$$ with position vector $$4\overrightarrow i - 3\overrightarrow j - 2\overrightarrow k $$    to the point $$B$$ with position vector $$6\overrightarrow i + \overrightarrow j - 3\overrightarrow k $$    is :

A $$15$$
B $$13$$
C $$\sqrt {13} $$
D none of these
Answer :   $$13$$

195. The non-zero vectors are $$\vec a,\,\vec b$$  and $$\vec c$$ are related by $$\vec a = 8\vec b$$   and $$\vec c = - 7\vec b.$$   Then the angle between $${\vec a}$$ and $${\vec c}$$ is :

A $$0$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{2}$$
D $$\pi $$
Answer :   $$\pi $$

196. Let $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k ,\,\overrightarrow c = \overrightarrow j - \overrightarrow k .$$       If $$\overrightarrow b $$ is a vector satisfying $$\overrightarrow a \times \overrightarrow b = \overrightarrow c $$   and $$\overrightarrow a .\overrightarrow b = 3$$   then $$\overrightarrow b $$ is :

A $$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$
B $$\frac{1}{3}\left( {5\overrightarrow i - 2\overrightarrow j - 2\overrightarrow k } \right)$$
C $$3\overrightarrow i - \overrightarrow j - \overrightarrow k $$
D none of these
Answer :   $$\frac{1}{3}\left( {5\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k } \right)$$

197. $$\left[ {\overrightarrow a + \overrightarrow b \,\,\overrightarrow b + \overrightarrow c \,\,\overrightarrow c + \overrightarrow a } \right]$$     is equal to :

A $$2\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
B $$3\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
C $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$
D $$0$$
Answer :   $$2\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]$$

198. Let $$\vec a = \hat j - \hat k$$   and $$\vec c = \hat i - \hat j - \,\hat k.$$   Then the vector $${\vec b}$$ satisfying $$\vec a \times \vec b + \vec c = 0$$   and $$\vec a.\vec b = 3$$

A $$2\hat i - \hat j + 2\hat k$$
B $$\hat i - \hat j - 2\hat k$$
C $$\hat i + \hat j - 2\hat k$$
D $$ - \hat i + \hat j - 2\hat k$$
Answer :   $$ - \hat i + \hat j - 2\hat k$$

199. If the vectors $$\alpha \hat i + \alpha \hat j + \gamma \hat k,\,\hat i + \hat k$$     and $$\gamma \hat i + \gamma \hat j + \beta \hat k$$    lie on a plane, where $$\alpha ,\,\beta $$  and $$\gamma $$ are distinct non-negative numbers, then $$\gamma $$ is :

A Arithmetic mean of $$\alpha $$ and $$\beta $$
B Geometric mean of $$\alpha $$ and $$\beta $$
C Harmonic mean of $$\alpha $$ and $$\beta $$
D None of the above
Answer :   Geometric mean of $$\alpha $$ and $$\beta $$

200. If $$\overrightarrow {{r_1}} ,\,\overrightarrow {{r_2}} ,\,\overrightarrow {{r_3}} $$   are the position vectors of three collinear points and scalars $$m$$ and $$n$$ exist such that $$\overrightarrow {{r_3}} = m\overrightarrow {{r_1}} + n\overrightarrow {{r_2}} ,$$    then what is the value of $$\left( {m + n} \right)\,?$$

A $$0$$
B $$1$$
C $$ - 1$$
D $$2$$
Answer :   $$1$$