3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

41. Three vertices of a tetrahedron are $$\left( {0,\,0,\,0} \right)\left( {6,\, - 5,\, - 1} \right)$$     and $$\left( { - 4,\,1,\,3} \right).$$   If the centroid of the tetrahedron be $$\left( {1,\, - 2,\,5} \right)$$   then the fourth vertex is :

A $$\left( {2,\, - 4,\,18} \right)$$
B $$\left( {2,\, - 4,\, - 18} \right)$$
C $$\left( {\frac{3}{4},\,\frac{{ - 3}}{2},\,\frac{7}{4}} \right)$$
D none of these
Answer :   $$\left( {2,\, - 4,\,18} \right)$$

42. If $$\left[ {\vec a \times \vec b\,\,\vec b \times \vec c\,\,\vec c \times \vec a} \right] = \lambda {\left[ {\vec a\,\vec b\,\vec c} \right]^2}$$       then $$\lambda $$ is equal to :

A $$0$$
B $$1$$
C $$2$$
D $$3$$
Answer :   $$1$$

43. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are any three vectors such that $$\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow c = \left( {\overrightarrow a - \overrightarrow b } \right).\overrightarrow c = 0$$        then $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c $$    is :

A $$\overrightarrow 0 $$
B $$\overrightarrow a $$
C $$\overrightarrow b $$
D none of these
Answer :   $$\overrightarrow 0 $$

44. The distance of the point $$\left( {1,\,1,\,1} \right)$$   from the plane passing through the points $$\left( {2,{\mkern 1mu} 1,{\mkern 1mu} 1} \right),\,\left( {1,{\mkern 1mu} 2,{\mkern 1mu} 1} \right)$$     and $$\left( {1,\,1,\,2} \right)$$   is :

A $$\frac{1}{{\sqrt 3 }}$$
B $$1$$
C $$\sqrt 3 $$
D none of these
Answer :   $$\frac{1}{{\sqrt 3 }}$$

45. $$\overrightarrow i \times \left( {\overrightarrow a \times \overrightarrow i } \right) + \overrightarrow j \times \left( {\overrightarrow a \times \overrightarrow j } \right) + \overrightarrow k \times \left( {\overrightarrow a \times \overrightarrow k } \right)$$          is equal to :

A $$2\overrightarrow a $$
B $$3\overrightarrow a $$
C $$\overrightarrow 0 $$
D none of these
Answer :   $$2\overrightarrow a $$

46. The unit vector perpendicular to both the vectors $$\overrightarrow a = \overrightarrow i + \overrightarrow j + \overrightarrow k $$    and $$\overrightarrow b = 2\overrightarrow i - \overrightarrow j + 3\overrightarrow k $$     and making an acute angle with the vector $$\overrightarrow k $$ is :

A $$ - \frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right)$$
B $$\frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right)$$
C $$\frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j + 3\overrightarrow k } \right)$$
D none of these
Answer :   $$ - \frac{1}{{\sqrt {26} }}\left( {4\overrightarrow i - \overrightarrow j - 3\overrightarrow k } \right)$$

47. Let $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$   is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$   is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$   equals :

A $$0$$
B $$\lambda \overrightarrow b $$
C $$\lambda \overrightarrow c $$
D $$\lambda \overrightarrow a $$
Answer :   $$\lambda \overrightarrow c $$

48. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are the position vectors of corners $$A,\,B,\,C$$   of a parallelogram $$ABCD,$$   then what is the position vector of the corner $$D\,?$$

A $$\overrightarrow a + \overrightarrow b + \overrightarrow c $$
B $$\overrightarrow a + \overrightarrow b - \overrightarrow c $$
C $$\overrightarrow a - \overrightarrow b + \overrightarrow c $$
D $$ - \overrightarrow a + \overrightarrow b + \overrightarrow c $$
Answer :   $$\overrightarrow a - \overrightarrow b + \overrightarrow c $$

49. For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Answer :   $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$

50. If $$\overrightarrow a ||\overrightarrow b \times \overrightarrow c $$    then $$\left( {\overrightarrow a \times \overrightarrow b } \right).\left( {\overrightarrow a \times \overrightarrow c } \right)$$     is equal to :

A $${\overrightarrow a ^2}\left( {\overrightarrow b .\overrightarrow c } \right)$$
B $${\overrightarrow b ^2}\left( {\overrightarrow a .\overrightarrow c } \right)$$
C $${\overrightarrow c ^2}\left( {\overrightarrow a .\overrightarrow b } \right)$$
D none of these
Answer :   $${\overrightarrow a ^2}\left( {\overrightarrow b .\overrightarrow c } \right)$$