121.
If the co-efficents of $${x^3}\,{\text{and }}{x^4}$$ in the expansion of $$\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$$ in powers of $$x$$ are both zero, then $$(a, b)$$ is equal to:
A
$$\left( {14,\frac{{272}}{3}} \right)$$
B
$$\left( {16,\frac{{272}}{3}} \right)$$
C
$$\left( {16,\frac{{251}}{3}} \right)$$
D
$$\left( {14,\frac{{251}}{3}} \right)$$
Answer :
$$\left( {16,\frac{{272}}{3}} \right)$$
View Solution
Consider $$\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$$
$$\eqalign{
& = \left( {1 + ax + b{x^2}} \right)\left[ {^{18}{C_0} - {\,^{18}}{C_1}\left( {2x} \right) + {\,^{18}}{C_2}{{\left( {2x} \right)}^2} - {\,^{18}}{C_3}{{\left( {2x} \right)}^3} + {\,^{18}}{C_4}{{\left( {2x} \right)}^4} - ......} \right] \cr
& {\text{Co - eff}}{\text{. of }}{x^3} = {\,^{18}}{C_3}{\left( { - 2} \right)^3} + a.{\left( { - 2} \right)^2}.{\,^{18}}{C_2} + b\left( { - 2} \right).{\,^{18}}{C_1} = 0 \cr
& {\text{Co - eff}}{\text{. of }}{x^3} = - {\,^{18}}{C_3}.8 + a \times 4.{\,^{18}}{C_2} - 2b \times 18 = 0 \cr
& = - \frac{{18 \times 17 \times 16}}{6}.8 + \frac{{4a + 18 \times 17}}{2} - 36\,b = 0 \cr
& = - 51 \times 16 \times 8 + a \times 36 \times 17 - 36b = 0 \cr
& = - 34 \times 16 + 51a - 3b = 0 \cr
& = 51a - 3b = 34 \times 16 = 544 \cr
& = 51a - 3b = 544\,\,\,\,\,......\left( {\text{i}} \right) \cr} $$
Only option number (B) satisfies the equation number (i)
122.
If the fourth term in the Binomial expansion of $${\left( {\frac{2}{x} + {x^{\log 8x}}} \right)^6}\left( {x > 0} \right){\text{ is 20}} \times {8^7},$$ then a value of $$x$$ is:
A
$${8^3}$$
B
$${8^2}$$
C
$$8$$
D
$${8^ {- 2}}$$
Answer :
$${8^2}$$
View Solution
$$\eqalign{
& \because \,\,{T_4} = 20 \times {8^7} \cr
& \Rightarrow \,{\,^6}{C_3}{\left( {\frac{2}{x}} \right)^3} \times {\left( {{x^{{{\log }_8}x}}} \right)^3} = 20 \times {8^7} \cr
& \Rightarrow \,\,8 \times 20 \times {\left( {\frac{{{x^{{{\log }_8}x}}}}{x}} \right)^3} = 20 \times {8^7} \cr
& \Rightarrow \,\,\frac{{{x^{{{\log }_8}x}}}}{x} = 64 \cr} $$
Now, take $${{{\log }_8}}$$ on both sides, we get
$$\eqalign{
& {\left( {{{\log }_8}x} \right)^2} - \left( {{{\log }_8}x} \right) = 2 \cr
& \Rightarrow \,\,{\log _8}x = - 1\,\,\,\,\,\,{\text{or, }}{\log _8}x = 2 \cr
& \Rightarrow \,\,x = \frac{1}{8}\,\,\,\,\,\,\,{\text{or, }}x = {8^2} \cr} $$
123.
The sum of the numerical co-efficients in the expansion of $${\left( {1 + \frac{x}{3} + \frac{{2y}}{3}} \right)^{12}}$$ is
A
$$1$$
B
$$2$$
C
$${2^{12}}$$
D
None of these
Answer :
$${2^{12}}$$
View Solution
The sum of all the numerical co-efficients in the expansion is obtained by putting $$x = 1, y = 1.$$
124.
The coefficient of $$x^n$$ in the polynomial $$\left( {x + {\,^n}{C_0}} \right)\left( {x + 3 \cdot {\,^n}{C_1}} \right)\left( {x + 5 \cdot {\,^n}{C_2}} \right).....\left( {x + \left( {2n + 1} \right) \cdot {\,^n}{C_n}} \right){\text{is}}$$
A
$$n \cdot {2^n}$$
B
$$n \cdot {2^{n + 1}}$$
C
$$\left( {n + 1} \right) \cdot {2^n}$$
D
$$n \cdot {2^n} + 1$$
Answer :
$$\left( {n + 1} \right) \cdot {2^n}$$
View Solution
$$\eqalign{
& \left( {x + {\,^n}{C_0}} \right)\left( {x + 3 \cdot {\,^n}{C_1}} \right)\left( {x + 5 \cdot {\,^n}{C_2}} \right).....\left( {x + \left( {2n + 1} \right) \cdot {\,^n}{C_n}} \right) \cr
& = \,{x^{n + 1}} + {x^n}\left\{ {^n{C_0} + 3 \cdot {\,^n}{C_1} + 5 \cdot {\,^n}{C_2} + ..... + \left( {2n + 1} \right) \cdot {\,^n}{C_n}} \right\} + ..... \cr
& {\text{Coeff}} \cdot \,{\text{of}}\,{x^n} \cr
& = {\,^n}{C_0} + 3 \cdot {\,^n}{C_1} + 5 \cdot {\,^n}{C_2} + ..... + \left( {2n + 1} \right) \cdot {\,^n}{C_n} \cr
& = \,1 + \left( {^n{C_1} + 2 \cdot {\,^n}{C_1}} \right) + \left( {^n{C_2} + 4 \cdot {\,^n}{C_2}} \right) + ..... + \left( {^n{C_n} + 2n \cdot {\,^n}{C_n}} \right) \cr
& = \,\left( {1 + {\,^n}{C_1} + ..... + {\,^n}{C_n}} \right) + 2\left( {^n{C_1} + 2 \cdot {\,^n}{C_2} + ..... + n \cdot {\,^n}{C_n}} \right) \cr
& = \,{2^n} + 2\left[ {n + 2 \cdot \frac{{n\left( {n - 1} \right)}}{{2!}} + 3 \cdot \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}} + ..... + n \cdot 1} \right] \cr
& = \,{2^n} + 2n\left[ {1 + {\,^{n - 1}}{C_1} + {\,^{n - 1}}{C_2} + ..... + {\,^{n - 1}}{C_{n - 1}}} \right] \cr
& = \,{2^n} + 2n \cdot {2^{n - 1}} = {2^n}\left( {1 + n} \right) = \left( {n + 1} \right) \cdot 2^n \cr} $$
125.
The coefficient of $$x^n$$ in the expansion of $${e^{{e^x}}}$$ is
A
$$\frac{{{e^x}}}{{n!}}$$
B
$$\frac{{{n^n}}}{{n!}}$$
C
$$\frac{{{1}}}{{n!}}$$
D
None of these
Answer :
None of these
View Solution
Let $$e^x = z,$$ then
$$\eqalign{
& {e^{{e^x}}} = {e^z} = \sum\limits_{k = 0}^\infty {\frac{{{z^k}}}{{k!}}} = \sum\limits_{k = 0}^\infty {\frac{{{{\left( {{e^x}} \right)}^k}}}{{k!}}} = \sum\limits_{k = 0}^\infty {\frac{{{e^{kx}}}}{{k!}}} \cr
& = \left( {1 + \frac{{{e^x}}}{{1!}} + \frac{{{e^{2x}}}}{{2!}} + \frac{{{e^{3x}}}}{{3!}} + .....\,{\text{to }}\infty } \right) \cr
& = 1 + \frac{1}{{1!}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{x^n}}}{{n!}}} } \right) + \frac{1}{{2!}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{{\left( {2x} \right)}^n}}}{{n!}}} } \right) + \frac{1}{{3!}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{{\left( {3x} \right)}^n}}}{{n!}}} } \right) + {\text{to}}.....\infty \cr
& \therefore {\text{Coefficient of }}{x^n}{\text{ in }}{e^{{e^x}}} \cr
& = \frac{1}{{1!}}\left( {\frac{1}{{n!}}} \right) + \frac{1}{{2!}}\left( {\frac{{{2^n}}}{{n!}}} \right) + \frac{1}{{3!}}\left( {\frac{{{3^n}}}{{n!}}} \right) + .....\,{\text{to }}\infty \cr
& = \frac{1}{{n!}}\left( {\frac{1}{{1!}} + \frac{{{2^n}}}{{2!}} + \frac{{{3^n}}}{{3!}} + .....\,{\text{to }}\infty } \right) \cr} $$
126.
The sum $$^{10}{C_3} + {\,^{11}}{C_3} + {\,^{12}}{C_3} + ..... + {\,^{20}}{C_3}$$ is equal to
A
$$^{21}{C_4}$$
B
$$^{21}{C_4} + {\,^{10}}{C_4}$$
C
$$^{21}{C_{4}} - {\,^{10}}{C_4}$$
D
None of these
Answer :
$$^{21}{C_{4}} - {\,^{10}}{C_4}$$
View Solution
Expression = co-efficient of $$x^3$$ in $$\left\{ {{{\left( {1 + x} \right)}^{10}} + {{\left( {1 + x} \right)}^{11}} + {{\left( {1 + x} \right)}^{12}} + ..... + {{\left( {1 + x} \right)}^{20}}} \right\}$$
= co-efficient of $$x^3$$ in $$\frac{{{{\left( {1 + x} \right)}^{10}}\left\{ {1 - {{\left( {1 + x} \right)}^{11}}} \right\}}}{{1 - \left( {1 + x} \right)}}$$
= co-efficient of $$x^4$$ in $$\left\{ {{{\left( {1 + x} \right)}^{21}} - {{\left( {1 + x} \right)}^{10}}} \right\}$$
$$ = {\,^{21}}{C_4} - {\,^{10}}{C_4}$$
127.
The fractional part of $$\frac{{{2^{4n}}}}{{15}}$$ is
A
$$\frac{1}{{15}}$$
B
$$\frac{2}{{15}}$$
C
$$\frac{4}{{15}}$$
D
None of these
Answer :
$$\frac{1}{{15}}$$
View Solution
$$\eqalign{
& \frac{{{2^{4n}}}}{{15}} = \frac{{{{16}^n}}}{{15}} = \frac{{{{\left( {1 + 15} \right)}^n}}}{{15}} \cr
& = \frac{{1 + {\,^n}{C_1} 15 + {\,^n}{C_2} {{15}^2} + ..... + {\,^n}{C_n} {{15}^n}}}{{15}} \cr
& = \frac{{1 + 15k}}{{15}},{\text{where }}k \in N, = \frac{1}{{15}} + k \cr} $$
$$\therefore $$ Fractional part of $$\frac{{{2^{4n}}}}{{15}}\,\,{\text{is}}\,\,\frac{1}{{15}}$$
128.
If $${a_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $$ then $$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $$ equals
A
$$\left( {n - 1} \right){a_n}$$
B
$$n{a_n}$$
C
$$\frac{1}{2}n{a_n}$$
D
None of these
Answer :
$$\frac{1}{2}n{a_n}$$
View Solution
Take $$n = 2m.$$ Then
$$\eqalign{
& {a_n} = \frac{1}{{^{2m}{C_0}}} + \frac{1}{{^{2m}{C_1}}} + ..... + \frac{1}{{^{2m}{C_{2m}}}} \cr
& {a_n} = 2\left( {\frac{1}{{^{2m}{C_0}}} + \frac{1}{{^{2m}{C_1}}} + ..... + \frac{1}{{^{2m}{C_{m - 1}}}}} \right) + \frac{1}{{^{2m}{C_m}}}\,\,\,\,.....\left( 1 \right) \cr
& \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = \sum\limits_{r = 0}^{2m} {\frac{r}{{^{2m}{C_r}}} = \frac{1}{{^{2m}{C_1}}} + \frac{2}{{^{2m}{C_2}}} + ..... + \frac{{2m}}{{^{2m}{C_{2m}}}}} \cr
& \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = \left( {\frac{1}{{^{2m}{C_1}}} + \frac{{2m - 1}}{{^{2m}{C_{2m - 1}}}}} \right) + \left( {\frac{2}{{^{2m}{C_2}}} + \frac{{2m - 2}}{{^{2m}{C_{2m - 2}}}}} \right) + ..... + \left( {\frac{{m - 1}}{{^{2m}{C_{m - 1}}}} + \frac{{m + 1}}{{^{2m}{C_{m + 1}}}}} \right) + \frac{m}{{^{2m}{C_m}}} + \frac{{2m}}{{^{2m}{C_{2m}}}} \cr
& \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = 2m\left\{ {\frac{1}{{^{2m}{C_1}}} + \frac{1}{{^{2m}{C_2}}} + ..... + \frac{1}{{^{2m}{C_{m - 1}}}}} \right\} + \frac{m}{{^{2m}{C_m}}} + 2m \cr
& \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = 2m\left\{ {\frac{1}{{^{2m}{C_0}}} + \frac{1}{{^{2m}{C_1}}} + \frac{1}{{^{2m}{C_2}}} + ..... + \frac{1}{{^{2m}{C_{m - 1}}}}} \right\} + \frac{m}{{^{2m}{C_m}}} \cr
& \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} = m\left( {{a_n} - \frac{1}{{^{2m}{C_m}}}} \right) + \frac{m}{{^{2m}{C_m}}} = m{a_n} = \frac{n}{2}{a_n}. \cr} $$
Similarly for $$n = 2m + 1.$$
129.
If $${\left( {1 + x} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + ..... + {a_{10}}{x^{10}}$$ then $${\left( {{a_0} - {a_2} + {a_4} - {a_6} + {a_8} - {a_{10}}} \right)^2} + {\left( {{a_1} - {a_3} + {a_5} - {a_7} + {a_9}} \right)^2}$$ is equal to
A
$${3^{10}}$$
B
$${2^{10}}$$
C
$${2^{9}}$$
D
None of these
Answer :
$${2^{10}}$$
View Solution
Putting $$x = i, - i$$ and multiplying both the results, we get the value of the
required expression.
130.
If the sum of odd numbered terms and the sum of even numbered terms in the expansion of $${\left( {x + a} \right)^n}$$ are $$A$$ and $$B$$ respectively, then the value of $${\left( {{x^2} - {a^2}} \right)^n}$$ is
A
$$A^2 - B^2$$
B
$$A^2 + B^2$$
C
$$4AB$$
D
None of these
Answer :
$$A^2 - B^2$$
View Solution
$$\eqalign{
& {\left( {x + a} \right)^n} = {\,^n}{C_0}{x^n} + {\,^n}{C_1}{x^{n - 1}}a + {\,^n}{C_2}{x^{n - 2}}{a^2} + {\,^n}{C_3}{x^{n - 3}}{a^3} + {\,^n}{C_4}{x^{n - 4}}{a^4} + ..... \cr
& = \left( {^n{C_0}{x^n} + {\,^n}{C_2}{x^{n - 2}}{a^2} + {\,^n}{C_4}{x^{n - 4}}{a^4} + .....} \right) + \left( {^n{C_1}{x^{n - 1}}a + {\,^n}{C_3}{x^{n - 3}}{a^3} + {\,^n}{C_5}{x^{n - 5}}{a^5}} \right) + ..... \cr
& = A + B\,\,\,\,.....\left( 1 \right) \cr} $$
Similarly, $${\left( {x - a} \right)^n} = A - B\,\,\,\,.....\left( 2 \right)$$
Multiplying eqns. (1) and (2), we get
$${\left( {{x^2} - {a^2}} \right)^n} = {A^2} - {B^2}$$