Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

121. If the co-efficents of $${x^3}\,{\text{and }}{x^4}$$  in the expansion of $$\left( {1 + ax + b{x^2}} \right){\left( {1 - 2x} \right)^{18}}$$     in powers of $$x$$ are both zero, then $$(a, b)$$  is equal to:

A $$\left( {14,\frac{{272}}{3}} \right)$$
B $$\left( {16,\frac{{272}}{3}} \right)$$
C $$\left( {16,\frac{{251}}{3}} \right)$$
D $$\left( {14,\frac{{251}}{3}} \right)$$
Answer :   $$\left( {16,\frac{{272}}{3}} \right)$$

122. If the fourth term in the Binomial expansion of $${\left( {\frac{2}{x} + {x^{\log 8x}}} \right)^6}\left( {x > 0} \right){\text{ is 20}} \times {8^7},$$       then a value of $$x$$ is:

A $${8^3}$$
B $${8^2}$$
C $$8$$
D $${8^ {- 2}}$$
Answer :   $${8^2}$$

123. The sum of the numerical co-efficients in the expansion of $${\left( {1 + \frac{x}{3} + \frac{{2y}}{3}} \right)^{12}}$$   is

A $$1$$
B $$2$$
C $${2^{12}}$$
D None of these
Answer :   $${2^{12}}$$

124. The coefficient of $$x^n$$ in the polynomial $$\left( {x + {\,^n}{C_0}} \right)\left( {x + 3 \cdot {\,^n}{C_1}} \right)\left( {x + 5 \cdot {\,^n}{C_2}} \right).....\left( {x + \left( {2n + 1} \right) \cdot {\,^n}{C_n}} \right){\text{is}}$$

A $$n \cdot {2^n}$$
B $$n \cdot {2^{n + 1}}$$
C $$\left( {n + 1} \right) \cdot {2^n}$$
D $$n \cdot {2^n} + 1$$
Answer :   $$\left( {n + 1} \right) \cdot {2^n}$$

125. The coefficient of $$x^n$$ in the expansion of $${e^{{e^x}}}$$ is

A $$\frac{{{e^x}}}{{n!}}$$
B $$\frac{{{n^n}}}{{n!}}$$
C $$\frac{{{1}}}{{n!}}$$
D None of these
Answer :   None of these

126. The sum $$^{10}{C_3} + {\,^{11}}{C_3} + {\,^{12}}{C_3} + ..... + {\,^{20}}{C_3}$$       is equal to

A $$^{21}{C_4}$$
B $$^{21}{C_4} + {\,^{10}}{C_4}$$
C $$^{21}{C_{4}} - {\,^{10}}{C_4}$$
D None of these
Answer :   $$^{21}{C_{4}} - {\,^{10}}{C_4}$$

127. The fractional part of $$\frac{{{2^{4n}}}}{{15}}$$  is

A $$\frac{1}{{15}}$$
B $$\frac{2}{{15}}$$
C $$\frac{4}{{15}}$$
D None of these
Answer :   $$\frac{1}{{15}}$$

128. If $${a_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $$   then $$\sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $$  equals

A $$\left( {n - 1} \right){a_n}$$
B $$n{a_n}$$
C $$\frac{1}{2}n{a_n}$$
D None of these
Answer :   $$\frac{1}{2}n{a_n}$$

129. If $${\left( {1 + x} \right)^{10}} = {a_0} + {a_1}x + {a_2}{x^2} + ..... + {a_{10}}{x^{10}}$$         then $${\left( {{a_0} - {a_2} + {a_4} - {a_6} + {a_8} - {a_{10}}} \right)^2} + {\left( {{a_1} - {a_3} + {a_5} - {a_7} + {a_9}} \right)^2}$$           is equal to

A $${3^{10}}$$
B $${2^{10}}$$
C $${2^{9}}$$
D None of these
Answer :   $${2^{10}}$$

130. If the sum of odd numbered terms and the sum of even numbered terms in the expansion of $${\left( {x + a} \right)^n}$$  are $$A$$ and $$B$$ respectively, then the value of $${\left( {{x^2} - {a^2}} \right)^n}$$  is

A $$A^2 - B^2$$
B $$A^2 + B^2$$
C $$4AB$$
D None of these
Answer :   $$A^2 - B^2$$