22.
What is the degree of the differential equation $$y = x\frac{{dy}}{{dx}} + {\left( {\frac{{dy}}{{dx}}} \right)^{ - 1}}\,?$$
A
$$1$$
B
$$2$$
C
$$ - 1$$
D
Degree does not exist.
Answer :
$$2$$
Given differential equation is $$y = x\frac{{dy}}{{dx}} + {\left( {\frac{{dy}}{{dx}}} \right)^{ - 1}}$$
Multiply by $$\frac{{dy}}{{dx}}\,;\,\,\,y\frac{{dy}}{{dx}} = x{\left( {\frac{{dy}}{{dx}}} \right)^2} + 1$$
Since power of highest order derivative is $$2$$
$$\therefore $$ degree $$ = 2.$$
23.
The solution of primitive integral equation $$\left( {{x^2} + {y^2}} \right)dy = xydx$$ is $$y = y\left( x \right).$$ If $$y\left( 1 \right) = 1$$ and $$\left( {{x_0}} \right) = e,$$ then $${{x_0}}$$ is equal to-
A
$$\sqrt {2\left( {{e^2} - 1} \right)} $$
B
$$\sqrt {2\left( {{e^2} + 1} \right)} $$
C
$$\sqrt 3 \,e$$
D
$$\sqrt {\frac{{{e^2} + 1}}{2}} $$
Answer :
$$\sqrt 3 \,e$$
The given D.E. is $$\left( {{x^2} + {y^2}} \right)dy = xy\,dx\,\,\,{\text{s}}{\text{.t}}{\text{.}}\,\,y\left( 1 \right) = 1$$ and $$y\left( {{x_0}} \right) = e$$
The given equation can be written as
$$\eqalign{
& \frac{{dy}}{{dx}} = \frac{{xy}}{{{x^2} + {y^2}}} \cr
& {\text{Put }}y = vx, \cr
& \therefore v + x\frac{{dv}}{{dx}} = \frac{v}{{1 + {v^2}}} \cr
& \Rightarrow x\frac{{dv}}{{dx}} = \frac{{ - {v^3}}}{{1 + {v^2}}} \cr
& \Rightarrow \int {\frac{{1 + {v^2}}}{{{v^3}}}dv + \int {\frac{{dx}}{x} = 0} } \cr
& \Rightarrow - \frac{1}{{2{v^2}}} + \log \left| v \right| + \log \left| x \right| = C \cr
& \Rightarrow \log \,y = C + \frac{{{x^2}}}{{2{y^2}}}\,\,\,\,\,\,\,\left( {{\text{using }}v = \frac{y}{x}} \right) \cr
& {\text{Also, }}y\left( 1 \right) = 1 \Rightarrow \log 1 = C + \frac{1}{2} \Rightarrow C = - \frac{1}{2} \cr
& \therefore \,\log \,y = \frac{{{x^2} - {y^2}}}{{2{y^2}}},\,\,\,\,\,\,\,\,{\text{But given }}y\left( {{x_0}} \right) = e \cr
& \Rightarrow \log \,e = \frac{{x_0^2 - {e^2}}}{{2{e^2}}}\,\,\,\, \Rightarrow x_0^2 = 3{e^2}\,\,\,\, \Rightarrow {x_0} = \sqrt 3 \,e \cr} $$
24.
The solution to the differential equation $$\frac{{dy}}{{dx}} = \frac{{yf'\left( x \right) - {y^2}}}{{f\left( x \right)}}$$ where $$f\left( x \right)$$ is a given function is :
29.
At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production $$P$$ w.r.t. additional number of workers $$x$$ is given by $$\frac{{dP}}{{dx}} = 100 - 12\sqrt x .$$ If the firm employs 25 more workers, then the new level of production of items is-
A
$$2500$$
B
$$3000$$
C
$$3500$$
D
$$4500$$
Answer :
$$3500$$
Given, Rate of change is
$$\eqalign{
& \frac{{dP}}{{dx}} = 100 - 12\sqrt x \cr
& \Rightarrow dP = \left( {100 - 12\sqrt x } \right)dx \cr} $$
By integrating
$$\eqalign{
& \Rightarrow \int {dP = \int {\left( {100 - 12\sqrt x } \right)dx} } \cr
& P = 100x - 8{x^{\frac{3}{2}}} + C \cr} $$
Given, when $$x=0$$ then $$P =2000$$
$$ \Rightarrow C = 2000$$
Now when $$x= 25$$ then
$$\eqalign{
& P = 100 \times 25 - 8 \times {\left( {25} \right)^{\frac{3}{2}}} + 2000 \cr
& \Rightarrow P = 4500 - 1000 \cr
& \Rightarrow P = 3500 \cr} $$
30.
The solution of the differential equation $$x\,\sin \,x\frac{{dy}}{{dx}} + \left( {x\,\cos \,x + \sin \,x} \right)y = \sin \,x.$$
When $$y\left( 0 \right) = 0$$ is :