Differential Equations MCQ Questions & Answers in Calculus | Maths
Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
31.
What is the degree of the differential equation $${\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^{\frac{2}{3}}} + 4 - 3\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right) + 5\left( {\frac{{dy}}{{dx}}} \right) = 0\,?$$
A
$$3$$
B
$$2$$
C
$$\frac{2}{3}$$
D
Not defined
Answer :
$$2$$
Degree of a differential equation is the power to which the highest derivative is raised when it is expressed as polynomial of derivatives.
Given equation is
$$\eqalign{
& {\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^{\frac{2}{3}}} - 3\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right) + 5\left( {\frac{{dy}}{{dx}}} \right) + 4 = 0 \cr
& \Rightarrow {\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^{\frac{2}{3}}} = 3\frac{{{d^2}y}}{{d{x^2}}} - 5\frac{{dy}}{{dx}} - 4 \cr} $$
Cube on both side, $${\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^2} = {\left[ {3\frac{{{d^2}y}}{{d{x^2}}} - 5\frac{{dy}}{{dx}} - 4} \right]^3}$$
Hence, degree $$ = 2.$$
32.
The solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{y}{x}\log \,y = \frac{y}{{{x^2}}}{\left( {\log \,y} \right)^2}$$ is :
A
$$y = \log \left( {{x^2} + cx} \right)$$
B
$$\log \,y = x\left( {c{x^2} + \frac{1}{2}} \right)$$
C
$$x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right)$$
33.
The order and degree of the differential equation of parabolas having vertex at the origin and focus at $$\left( {a,\,0} \right)$$ where $$a > 0,$$ are respectively :
A
$$1,\,1$$
B
$$2,\,1$$
C
$$1,\,2$$
D
$$2,\,2$$
Answer :
$$1,\,1$$
The equation of parabolas having vertex at $$\left( {0,\,0} \right)$$ & focus at $$\left( {a,\,0} \right),$$ where $$\left( {a > 0} \right)$$ is : $$\eqalign{
& {y^2} = 4ax......\left( 1 \right) \cr
& 2y.\frac{{dy}}{{dx}} = 4a\,\,\,\,\,\,\,\,\,\left[ {{\text{on differentiating}}} \right] \cr} $$
On putting the value of $$\left( {4a} \right)$$ in equation $$\left( 1 \right)$$ we get,
$$\eqalign{
& 2x.\frac{{dy}}{{dx}} - y = 0 \cr
& {\text{in order }} = 1{\text{ & degree }} = 1 \cr} $$
34.
If for the differential equation $$y' = \frac{y}{x} + \phi \left( {\frac{x}{y}} \right),$$ the general solution is $$y = \frac{x}{{\log \left| {Cx} \right|}}$$ then $$\phi \left( {\frac{x}{y}} \right)$$ is given by :
37.
The differential equation $$\phi \left( x \right)dy = y\left\{ {\phi '\left( x \right) - y} \right\}dx$$ is changed in the form $$df\left( {x,\,y} \right) = 0.$$ Then $$f\left( {x,\,y} \right)$$ is :
A
$$\frac{1}{2}\phi \left( x \right) + y$$
B
$$\frac{1}{y}\phi \left( x \right) - x$$
C
$$\frac{1}{y}\phi \left( x \right) + x$$
D
$$\frac{{\phi \left( x \right)}}{y}$$
Answer :
$$\frac{1}{y}\phi \left( x \right) - x$$
$$\eqalign{
& \phi \left( x \right)dy = y\phi \left( x \right)dx - {y^2}dx \cr
& {\text{or }}\frac{{y\phi '\left( x \right)dx - \phi \left( x \right)dy}}{{{y^2}}}dy - dx = 0 \cr
& {\text{or }}d\left( {\frac{{\phi \left( x \right)}}{y}} \right) - dx = 0 \cr
& {\text{or }}d\left( {\frac{{\phi \left( x \right)}}{y} - x} \right) = 0 \cr} $$
38.
The differential equation $$\left( {1 + {y^2}} \right)x\,dx - \left( {1 + {x^2}} \right)y\,dy = 0$$ represents a family of :
A
ellipses of constant eccentricity
B
ellipses of variable eccentricity
C
hyperbolas of constant eccentricity
D
hyperbolas of variable eccentricity
Answer :
hyperbolas of variable eccentricity
Given $$\frac{{x\,dx}}{{1 + {x^2}}} = \frac{{y\,dy}}{{1 + {y^2}}}$$
Integrating we get,
$$\eqalign{
& \frac{1}{2}\log \left( {1 + {x^2}} \right) = \frac{1}{2}\log \left( {1 + {y^2}} \right) + a \cr
& \Rightarrow 1 + {x^2} = c\left( {1 + {y^2}} \right),\,c = {e^{2a}} \cr
& {x^2} - c{y^2} = c - 1 \Rightarrow \frac{{{x^2}}}{{c - 1}} - \frac{{{y^2}}}{{\left( {\frac{{c - 1}}{c}} \right)}} = 1......\left( 1 \right) \cr} $$
Clearly $$c > 0{\text{ as }}c = {e^{2a}}$$
Hence, the equation $$\left( 1 \right)$$ gives a family of
hyperbolas with eccentricity
$$ = \sqrt {\frac{{c - 1 + \frac{{c - 1}}{c}}}{{c - 1}}} = \sqrt {\frac{{{c^2} - 1}}{{c - 1}}} = \sqrt {c + 1} {\text{ if }}c \ne 1$$
Thus eccentricity varies from member to member of the family as it depends on $$c.$$ If $$c = 1,$$ it is a pair of lines $${x^2} - {y^2} = 0$$
39.
The differential equation of family of curves whose tangent form an angle of $$\frac{\pi }{4}$$ with the hyperbola $$xy = {C^2}$$ is :
A
$$\frac{{dy}}{{dx}} = \frac{{{x^2} + {C^2}}}{{{x^2} - {C^2}}}$$
B
$$\frac{{dy}}{{dx}} = \frac{{{x^2} - {C^2}}}{{{x^2} + {C^2}}}$$
C
$$\frac{{dy}}{{dx}} = - \frac{{{C^2}}}{{{x^2}}}$$