72.
A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$ is-
A
$$y=2$$
B
$$y=2x$$
C
$$y=2x-4$$
D
$$y = 2{x^2} - 4$$
Answer :
$$y=2x-4$$
$${\left( {\frac{{dy}}{{dx}}} \right)^2} - x.\frac{{dy}}{{dx}} + y = 0$$
By actual verification we find that the choice (c),
i.e. $$y=2x-4$$ satisfies the given differential equation.
73.
The solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{{x + y}}{x}$$ satisfying the condition $$y\left( 1 \right) = 1$$ is-
A
$$y = \ln \,x + x$$
B
$$y = x\ln \,x + {x^2}$$
C
$$y = x{e^{\left( {x\, - \,1} \right)}}$$
D
$$y = x\ln \,x + x$$
Answer :
$$y = x\ln \,x + x$$
$$\frac{{dy}}{{dx}} = \frac{{x + y}}{x} = 1 + \frac{y}{x}$$
Putting $$y=vx$$ and $$\frac{{dv}}{{dx}} = v + x\frac{{dv}}{{dx}}$$
we get
$$\eqalign{
& v + x\frac{{dv}}{{dx}} = 1 + v\,\,\, \Rightarrow \int {\frac{{dx}}{x} = \int {dv} } \cr
& \Rightarrow v = \ln \,x + c\,\, \Rightarrow y = x\,\ln \,x + cx \cr
& {\text{As }}y\left( 1 \right) = 1 \cr
& \therefore c = 1 \cr} $$
So solution is $$y=x \ln x + x$$
74.
The differential equation of the family of curves $$y = {e^x}\left( {A\cos \,x + B\sin \,x} \right),$$ where $$A,\,B$$ are arbitrary constants, has the degree $$n$$ and order $$m.$$ Then :
Differential equation is
$$\left( {x + y} \right)\left( {dx - dy} \right) = dx + dy,$$ dividing by $$dx$$ on both the sides
$$\left( {x + y} \right)\left( {1 - \frac{{dy}}{{dx}}} \right) = 1 + \frac{{dy}}{{dx}}$$
Putting $$x + y = v$$
$$1 + \frac{{dy}}{{dx}} = \frac{{dv}}{{dx}}{\text{ and }}\frac{{dy}}{{dx}} = \frac{{dv}}{{dx}} - 1$$
The equation changes to
$$\eqalign{
& v\left\{ {1 - \left( {\frac{{dv}}{{dx}} - 1} \right)} \right\} = \frac{{dv}}{{dx}}\,;\,v\left( {2 - \frac{{dv}}{{dx}}} \right) = \frac{{dv}}{{dx}} \cr
& 2v - v\frac{{dv}}{{dx}} = \frac{{dv}}{{dx}}\,;\,2v = \left( {1 + v} \right)\frac{{dv}}{{dx}} \cr
& \left( {\frac{{1 + v}}{v}} \right)dv = 2dx\,{\text{ or }}\left( {\frac{1}{v} + 1} \right)dv = 2dx \cr} $$
Integrating on both the sides
$$\eqalign{
& \int {\frac{{dv}}{v}} + \int {dv} = 2\int {dx + c} \cr
& {\text{or, }}\log \,v + v = 2x + c\,\,\,\,\,\,\,\,\,\left[ {{\text{Putting }}v = x + y} \right] \cr
& {\text{or, }}\log \left( {x + y} \right) + x + y = 2x + c \cr
& {\text{or, }}\log \left( {x + y} \right) + y - x = c \cr
& {\text{or, }}y - x + \log \left( {x + y} \right) = c \cr} $$
77.
The population of a country doubles in $$40$$ years. Assuming that the rate of increase is proportional to the number of inhabitants, the number of years in which it would treble itself is :
A
$$80\,{\text{years}}$$
B
$$80\frac{{\log \,2}}{{\log \,3}}\,{\text{years}}$$
C
$$40\frac{{\log \,3}}{{\log \,2}}\,{\text{years}}$$
Let the initial population be $${x_0}$$ and it is $$x$$ in $$t$$ years, then the differential equation is
$$\frac{{dx}}{{dt}} = kx,\,\,k$$ is a constant
$$ \Rightarrow \,\frac{{dx}}{x} = k\,dt$$
Integrating we get
$$\log \,x + kt + c......\left( {\text{i}} \right)$$
When $$t = 0,\,x = {x_0} \Rightarrow c = \log \,{x_0}$$
Then from equation $$\left( {\text{i}} \right),$$
$$\eqalign{
& \log \,x = kt + \log \,{x_0} \cr
& \Rightarrow \log \frac{x}{{{x_0}}} = kt......\left( {{\text{ii}}} \right) \cr} $$
Now when $$t = 40,\,\frac{x}{{{x_0}}} = 2$$
$$\eqalign{
& \Rightarrow \log \,2 = k.40 \cr
& \Rightarrow k = \frac{{\log \,2}}{{40}} \cr} $$
$$\eqalign{
& \therefore \,{\text{equation }}\left( {{\text{ii}}} \right){\text{ bocomes }}\log \frac{x}{{{x_0}}} = \frac{{\log \,2}}{{40}}.t \cr
& {\text{Next put }}\frac{x}{{{x_0}}} = 3 \Rightarrow t = 40\frac{{\log \,3}}{{\log \,2}} \cr} $$
78.
Let the population of rabbits surviving at time $$t$$ be governed by the differential equation $$\frac{{dp\left( t \right)}}{{dx}} = \frac{1}{2}p\left( t \right) - 200.$$ If $$p\left( 0 \right) = 100,$$ then $${p\left( t \right)}$$ equals:
A
$$600 - 500\,{e^{\frac{t}{2}}}$$
B
$$400 - 300\,{e^{ - \,\frac{t}{2}}}$$
C
$$400 - 300\,{e^{\frac{t}{2}}}$$
D
$$300 - 200\,{e^{ - \,\frac{t}{2}}}$$
Answer :
$$400 - 300\,{e^{\frac{t}{2}}}$$
Given differential equation is
$$\frac{{dp\left( t \right)}}{{dx}} = \frac{1}{2}p\left( t \right) - 200$$
By separating the variable, we get
$$\eqalign{
& dp\left( t \right) = \left[ {\frac{1}{2}p\left( t \right) - 200} \right]dt \cr
& \Rightarrow \frac{{dp\left( t \right)}}{{\frac{1}{2}p\left( t \right) - 200}} = dt \cr} $$
Integrating on both the sides,
$$\eqalign{
& \int {\frac{{d\left( {p\left( t \right)} \right)}}{{\frac{1}{2}p\left( t \right) - 200}}} = \int {dt} \cr
& {\text{Let }}\frac{1}{2}p\left( t \right) - 200 = s \cr
& \Rightarrow \frac{{dp\left( t \right)}}{2} = ds \cr
& {\text{So, }}\int {\frac{{dp\left( t \right)}}{{\frac{1}{2}p\left( t \right) - 200}}} = \int {dt} \cr
& \Rightarrow \int {\frac{{2ds}}{s} = \int {dt} } \cr
& \Rightarrow 2\,\log \,s = t + c \cr
& \Rightarrow 2\,\log \left( {\frac{{p\left( t \right)}}{2} - 200} \right) = t + c \cr
& \Rightarrow \frac{{p\left( t \right)}}{2} - 200 = {e^{\frac{1}{2}}}k \cr} $$
Using given condition $$p\left( t \right) = 400 - 300\,{e^{\frac{t}{2}}}$$
79.
The degree and order of the differential equation of the family of all parabolas whose axis is $$x$$-axis, are respectively.