Differential Equations MCQ Questions & Answers in Calculus | Maths
Learn Differential Equations MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
81.
The gradient of the curve passing through $$\left( {4,\,0} \right)$$ is given by $$\frac{{dy}}{{dx}} - \frac{y}{x} + \frac{{5x}}{{\left( {x + 2} \right)\left( {x - 3} \right)}} = 0$$ if the point $$\left( {5,\,a} \right)$$ lies on the curve, then the value of $$a$$ is :
82.
Under which one of the following conditions does the solution of $$\frac{{dy}}{{dx}} = \frac{{ax + b}}{{cy + d}}$$ represent a parabola ?
A
$$a = 0,\,c = 0$$
B
$$a = 1,\,b = 2,\,c \ne 0$$
C
$$a = 0,\,c \ne 0,\,b \ne 0$$
D
$$a = 1,\,c = 1$$
Answer :
$$a = 0,\,c \ne 0,\,b \ne 0$$
Given : $$\frac{{dy}}{{dx}} = \frac{{ax + b}}{{cy + d}}$$
or, $$\left( {cy + d} \right)dy = \left( {ax + b} \right)dx$$
Integrating both the sides.
$$\eqalign{
& c.\int {y\,dy + d} \int {dy = a} \int {x\,dx + b} \int {dx + K} \,\,\,\,\,\,\left[ {K{\text{ is constant integration}}} \right] \cr
& {\text{or, }}c.\frac{{{y^2}}}{2} + d.y = a\frac{{{x^2}}}{2} + b.x + K \cr
& {\text{or, }}c{y^2} + 2d.y = a{x^2} + 2b.x + 2K \cr} $$
This equation will represent a parabola when either, the coefficient of $${x^2}$$ or the coefficient of $${y^2}$$ is zero, but not both.
Thus either $$c = 0$$ or $$a = 0$$ but not both.
From the choice given $$a = 0,\,c \ne 0{\text{ and }}\,b \ne 0$$
83.
The solutions of $$\left( {x + y + 1} \right)dy = dx$$ are :
A
$$x + y + 2 = C{e^y}$$
B
$$x + y + 4 = C\,\log \,y$$
C
$$\log \left( {x + y + 2} \right) = Cy$$
D
$$\log \left( {x + y + 2} \right) = C - y$$
Answer :
$$x + y + 2 = C{e^y}$$
Putting $$x + y + 1 = u,$$ we have $$du = dx + dy$$ and the given equation reduces to $$u\left( {du - dx} \right) = dx$$
$$\eqalign{
& \Rightarrow \frac{{u\,du}}{{u + 1}} = dx \cr
& \Rightarrow u - \log \left( {u + 1} \right) = x \cr
& \Rightarrow \log \left( {x + y + 2} \right) = y + {\text{constant}} \cr
& \Rightarrow x + y + 2 = C{e^y} \cr} $$
84.
If $$\phi \left( x \right)$$ is a differentiable function, then the solution of the differential equation $$dy + \left\{ {y\phi '\left( x \right) - \phi \left( x \right)\phi '\left( x \right)} \right\}dx = 0$$ is :
A
$$y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}}$$
B
$$y\phi \left( x \right) = {\left\{ {\phi \left( x \right)} \right\}^2} + c$$
C
$$y{e^{\phi \left( x \right)}} = \phi \left( x \right){e^{\phi \left( x \right)}} + c$$
D
none of these
Answer :
$$y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}}$$
$$\eqalign{
& {\text{We have, }}dy + \left\{ {y\phi '\left( x \right) - \phi \left( x \right)\phi '\left( x \right)} \right\}dx = 0 \cr
& \Rightarrow \frac{{dy}}{{dx}} + \phi '\left( x \right).y = \phi \left( x \right)\phi '\left( x \right)......\left( {\text{i}} \right) \cr} $$
This is a linear differential equation with $${\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\phi '\left( x \right)} dx}} = {e^{\phi \left( x \right)}}$$
Multiplying Equation $$\left( {\text{i}} \right)$$ by $$\phi \left( x \right)$$ and integrating, we get
$$\eqalign{
& y{e^{\phi \left( x \right)}} = \int {\phi \left( x \right)\phi '\left( x \right){e^{\phi \left( x \right)}}dx} \cr
& \Rightarrow y{e^{\phi \left( x \right)}} = \int {{e^{\phi \left( x \right)}}\phi \left( x \right)\phi '\left( x \right)dx} \cr
& \Rightarrow y{e^{\phi \left( x \right)}} = \int {\phi \left( x \right){e^{\phi \left( x \right)}}\phi '\left( x \right)dx} \cr
& \Rightarrow y{e^{\phi \left( x \right)}} = \phi \left( x \right){e^{\phi \left( x \right)}} - \int {\phi '\left( x \right){e^{\phi \left( x \right)}}dx} \cr
& \Rightarrow y{e^{\phi \left( x \right)}} = \phi \left( x \right){e^{\phi \left( x \right)}} - {e^{\phi \left( x \right)}} + c \cr
& \Rightarrow y = \left\{ {\phi \left( x \right) - 1} \right\} + c{e^{ - \phi \left( x \right)}} \cr} $$
85.
$$y = 2\,\cos \,x + 3\,\sin \,x$$ satisfies which of the following differential equations ?
$$\eqalign{
& 1.\,\,\,\frac{{{d^2}y}}{{d{x^2}}} + y = 0 \cr
& 2.\,\,\,{\left( {\frac{{dy}}{{dx}}} \right)^2} + \frac{{dy}}{{dx}} = 0 \cr} $$
Select the correct answer using the code given below.
86.
The solution of the equation $$x\int_0^x {y\left( t \right)dt = \left( {x + 1} \right)\int_0^x {ty\left( t \right)dt,\,x > 0} } {\text{ is :}}$$
A
$$y = \frac{c}{{{x^3}}}{e^{{x^3}}}$$
B
$$y = c{x^3}{e^{ - {x^3}}}$$
C
$$\frac{c}{{{x^3}}}{e^{ - x}}$$
D
none of these
Answer :
none of these
The equation is
$$x\int_0^x {y\left( t \right)dt = \left( {x + 1} \right)} \int_0^x {ty\left( t \right)dt......\left( {\text{i}} \right)} $$
Differentiating both the sides with respect to $$x,$$ we get
$$\eqalign{
& xy\left( x \right) + \int_0^x {y\left( t \right)dt = \left( {x + 1} \right)xy\left( x \right)} + \int_0^x {ty\left( t \right)dt} \cr
& \Rightarrow \int_0^x {y\left( t \right)dt = {x^2}y\left( x \right)} + \int_0^x {ty\left( t \right)dt......\left( {{\text{ii}}} \right)} \cr} $$
Differentiating again with respect to $$x,$$ we get
$$\eqalign{
& y\left( x \right) = 2xy\left( x \right) + {x^2}y'\left( x \right) + xy\left( x \right) \cr
& \Rightarrow {x^2}\frac{{dy}}{{dx}} = \left( {1 - 3x} \right)y\,\,\,\,\,\,\,\,\left[ {{\text{writing }}y\left( x \right) = y} \right] \cr
& \Rightarrow \frac{{dy}}{y} = \left( {\frac{{1 - 3x}}{{{x^2}}}} \right)dx \cr
& \Rightarrow \frac{{dy}}{y} = \left( {\frac{1}{{{x^2}}} - \frac{3}{x}} \right)dx \cr} $$
Integrating we get, $$\log \,y = - \frac{1}{x} - 3\,\log \,x + a,\,\,\,a$$ is constant
$$\eqalign{
& \Rightarrow \log \,y + 3\,\log \,x = a - \frac{1}{x} \cr
& \Rightarrow \log \left( {y{x^3}} \right) = a - \frac{1}{x} \cr
& \Rightarrow y{x^3} = {e^{a - \frac{1}{x}}} \cr
& \Rightarrow y{x^3} = c.{e^{ - \frac{1}{x}}}{\text{ where }}c = {e^a} \cr
& \therefore \,y = \frac{c}{{{x^3}}}{e^{ - \frac{1}{x}}} \cr} $$
87.
What is the degree of the differential equation $$k\frac{{{d^2}y}}{{d{x^2}}} = {\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^3}} \right]^{\frac{3}{2}}},$$ where $$k$$ is a constant?
A
1
B
2
C
3
D
4
Answer :
2
In the given equation $$K.\frac{{{d^2}y}}{{d{x^2}}} = {\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^3}} \right]^{\frac{3}{2}}}$$
Squaring both the sides $${K^2}.{\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right)^2} = {\left[ {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^3}} \right]^3}$$
Degree of a differential equation is the highest power of the highest derivative in equation when derivatives are expressed as polynomial. Here degree of differential equation is $$2.$$
88.
Which of the following does not represent the orthogonal trajectory of the system of curves $${\left( {\frac{{dy}}{{dx}}} \right)^2} = \frac{a}{x}$$
A
$$9a{\left( {y + c} \right)^2} = 4{x^3}$$
B
$$y + c = \frac{{ - 2}}{{3\sqrt a }}{x^{\frac{3}{2}}}$$
C
$$y + c = \frac{2}{{3\sqrt a }}{x^{\frac{3}{2}}}$$
D
All are orthogonal trajectories
Answer :
All are orthogonal trajectories
The family of curves which are orthogonal (i.e. intersect at right angles) to a given system of curves is obtained by substituting $$ - \frac{{dx}}{{dy}}$$ for $$\frac{{dy}}{{dx}}$$ in the differential equation of the given system.
The given differential equation is $${\left( {\frac{{dy}}{{dx}}} \right)^2} = \frac{a}{x}$$
Replacing $$\frac{{dy}}{{dx}}$$ by $$ - \frac{{dx}}{{dy}},$$ we get
$${\left( {\frac{{dx}}{{dy}}} \right)^2} = \frac{a}{x}\, \Rightarrow {\left( {\frac{{dy}}{{dx}}} \right)^2} = \frac{x}{a}\, \Rightarrow \frac{{dy}}{{dx}} = \pm \sqrt {\frac{x}{a}} $$
Integrating we get
$$\eqalign{
& y + c = \pm \frac{2}{{3\sqrt a }}{x^{\frac{3}{2}}}......\left( {\text{i}} \right) \cr
& \Rightarrow {\left( {y + c} \right)^2} = \frac{4}{{9a}}{x^3} \cr
& \Rightarrow 9a{\left( {y + c} \right)^2} = 4{x^3}......\left( {{\text{ii}}} \right) \cr} $$
From $$\left( {{\text{i}}} \right)$$ and $$\left( {{\text{ii}}} \right)$$ all of the first three given options represent required equations.
89.
The solution to the differential equation $$\frac{{dy}}{{dx}} = \frac{{yf'\left( x \right) - {y^2}}}{{f\left( x \right)}}$$ where $$f\left( x \right)$$ is a given function is :