Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

11. If \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\left[ x \right] \ne 0\\ 0,\,\left[ x \right] = 0, \end{array} \right.\]     where $$\left[ \cdot \right]$$ denotes the greatest integer function, then $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$   is equal to :

A 1
B 0
C $$-1$$
D none of these
Answer :   none of these

12. $$\mathop {\lim }\limits_{x \to 1} \frac{{x\,\sin \left\{ {x - \left[ x \right]} \right\}}}{{x - 1}},$$    where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :

A 0
B $$-1$$
C not existent
D none of these
Answer :   not existent

13. For the function $$f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + ...... + \frac{{{x^2}}}{2} + x + 1,\,f'\left( 1 \right) = mf'\left( 0 \right),$$            where $$m$$ is equal to :

A $$50$$
B $$0$$
C $$100$$
D $$200$$
Answer :   $$100$$

14. If $$y = \frac{1}{{1 + {x^{\beta - \alpha }} + {x^{\gamma - \alpha }}}} + \frac{1}{{1 + {x^{\alpha - \beta }} + {x^{\gamma - \beta }}}} + \frac{1}{{1 + {x^{\alpha - \gamma }} + {x^{\beta - \gamma }}}}$$            then $$\frac{{dy}}{{dx}}$$  is equal to :

A $$0$$
B $$1$$
C $$\left( {\alpha + \beta + \gamma } \right){x^{\alpha + \beta + \gamma - 1}}$$
D none of these
Answer :   $$0$$

15. $$\mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{x - \sin \,x}}{{x + {{\sin }^2}x}}} $$     is equal to :

A 1
B 0
C $$\infty $$
D none of these
Answer :   0

16. Let $$f\left( x \right) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} } ;\,1 < x < 26$$           be real valued function. Then $$f'\left( x \right)$$  for $$1 < x < 26$$   is :

A $$0$$
B $$\frac{1}{{\sqrt {x - 1} }}$$
C $$2\sqrt {x - 1} - 5$$
D none of these
Answer :   $$0$$

17. If $$\mathop {\lim }\limits_{x \to 0} \frac{{\log \left( {3 + x} \right) - \log \left( {3 - x} \right)}}{x} = k$$       the value of $$k$$ is-

A $$ - \frac{2}{3}$$
B $$0$$
C $$ - \frac{1}{3}$$
D $$\frac{2}{3}$$
Answer :   $$\frac{2}{3}$$

18. Let $$f:R \to R$$   be such that $${\text{ }}f\left( 1 \right) = 3$$   and $${\text{ }}f'\left( 1 \right) = 6.$$   Then $$\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}}$$     equals :

A $$1$$
B $${e^{\frac{1}{2}}}$$
C $${e^2}$$
D $${e^3}$$
Answer :   $${e^2}$$

19. The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{\int\limits_0^{{x^2}} {{{\sec }^2}tdt} }}{{x\,\sin \,x}}$$   is-

A $$0$$
B $$3$$
C $$2$$
D $$1$$
Answer :   $$1$$

20. If $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\left( {a - n} \right)nx - \tan \,x} \right)\sin \,nx}}{{{x^2}}} = 0$$        where $$n$$ is nonzero real number, then $$a$$ is equal to-

A $$0$$
B $$\frac{{n + 1}}{n}$$
C $$n$$
D $$n + \frac{1}{n}$$
Answer :   $$n + \frac{1}{n}$$