11.
If \[f\left( x \right) = \left\{ \begin{array}{l}
\frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\left[ x \right] \ne 0\\
0,\,\left[ x \right] = 0,
\end{array} \right.\] where $$\left[ \cdot \right]$$ denotes the greatest integer function, then $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$ is equal to :
A
1
B
0
C
$$-1$$
D
none of these
Answer :
none of these
View Solution
$$\eqalign{
& {\text{RH limit}} = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left[ {0 + h} \right]}}{{\left[ {0 + h} \right]}} = \mathop {\lim }\limits_{\theta \to 0} \frac{{\sin \,\theta }}{\theta } = 1 \cr
& {\text{LH limit}} = \mathop {\lim }\limits_{k \to 0} \frac{{\sin \left[ {0 - h} \right]}}{{\left[ {0 - h} \right]}} = \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( { - 1} \right)}}{{ - 1}} = \sin \,1 \cr
& \therefore \,{\text{RH limit}} \ne {\text{LH limit}} \cr} $$
12.
$$\mathop {\lim }\limits_{x \to 1} \frac{{x\,\sin \left\{ {x - \left[ x \right]} \right\}}}{{x - 1}},$$ where $$\left[ \cdot \right]$$ denotes the greatest integer function, is :
A
0
B
$$-1$$
C
not existent
D
none of these
Answer :
not existent
View Solution
$$\eqalign{
& {\text{RH limit}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 + h} \right)\sin \left\{ {1 + h - \left[ {1 + h} \right]} \right\}}}{{1 + h - 1}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 + h} \right)\sin \left( {1 + h - 1} \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \left( {1 + h} \right)\frac{{\sin \,h}}{h} \cr
& = 1 \cr
& {\text{LH limit}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 - h} \right)\sin \left\{ {1 - h - \left[ {1 - h} \right]} \right\}}}{{1 - h - 1}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 - h} \right)\sin \left( {1 - h} \right)}}{{ - h}} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{1 - h}}{{ - h}}.\sin \left( {1 - h} \right) \cr
& = - \infty \times \sin \,1 \cr
& \therefore \,{\text{RH limit}}\,\, \ne \,\,{\text{LH limit}} \cr} $$
13.
For the function $$f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + ...... + \frac{{{x^2}}}{2} + x + 1,\,f'\left( 1 \right) = mf'\left( 0 \right),$$ where $$m$$ is equal to :
A
$$50$$
B
$$0$$
C
$$100$$
D
$$200$$
Answer :
$$100$$
View Solution
$$\eqalign{
& {\text{Given,}} \cr
& f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + ......+\frac{{{x^2}}}{2} + x + 1 \cr
& \Rightarrow f'\left( x \right) = \frac{{100{x^{99}}}}{{100}} + \frac{{99{x^{98}}}}{{99}} + ...... + \frac{{2x}}{2} + 1 + 0 \cr
& \left[ {\because \,f\left( x \right) = {x^n} \Rightarrow f'\left( x \right) = n{x^{n - 1}}} \right] \cr
& \Rightarrow f'\left( x \right) = {x^{99}} + {x^{98}} + ..... + x + 1......({\text{i}}) \cr
& {\text{Putting, }}x = 1{\text{ we get}} \cr
& f'\left( 1 \right) = \underbrace {{{\left( 1 \right)}^{99}} + {{\left( 1 \right)}^{98}} + ...... + 1 + 1}_{100\,{\text{ times}}} = \underbrace {1 + 1 + 1 + ...... + 1 + 1}_{100\,{\text{ times}}} \cr
& \Rightarrow f'\left( 1 \right) = 100......({\text{ii}}) \cr
& {\text{Again, putting}}\,x = 0,{\text{ we get}} \cr
& f'\left( 0 \right) = 0 + 0 + ...... + 0 + 1 \cr
& \Rightarrow f'\left( 0 \right) = 1......({\text{iii}}) \cr
& {\text{From equation (ii) and (iii), we get; }}f'\left( 1 \right) = 100f'\left( 0 \right) \cr
& {\text{Hence,}}\,m = 100 \cr} $$
14.
If $$y = \frac{1}{{1 + {x^{\beta - \alpha }} + {x^{\gamma - \alpha }}}} + \frac{1}{{1 + {x^{\alpha - \beta }} + {x^{\gamma - \beta }}}} + \frac{1}{{1 + {x^{\alpha - \gamma }} + {x^{\beta - \gamma }}}}$$ then $$\frac{{dy}}{{dx}}$$ is equal to :
A
$$0$$
B
$$1$$
C
$$\left( {\alpha + \beta + \gamma } \right){x^{\alpha + \beta + \gamma - 1}}$$
D
none of these
Answer :
$$0$$
View Solution
$$\eqalign{
& {\text{We have,}} \cr
& y = \frac{1}{{1 + \frac{{{x^\beta }}}{{{x^\alpha }}} + \frac{{{x^\gamma }}}{{{x^\alpha }}}}} + \frac{1}{{1 + \frac{{{x^\alpha }}}{{{x^\beta }}} + \frac{{{x^\gamma }}}{{{x^\beta }}}}} + \frac{1}{{1 + \frac{{{x^\alpha }}}{{{x^\gamma }}} + \frac{{{x^\beta }}}{{{x^\gamma }}}}} \cr
& = \frac{{{x^\alpha }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} + \frac{{{x^\beta }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} + \frac{{{x^\gamma }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} \cr
& = \frac{{{x^\alpha } + {x^\beta } + {x^\gamma }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} \cr
& = 1 \cr
& \therefore \,\frac{{dy}}{{dx}} = 0 \cr} $$
15.
$$\mathop {\lim }\limits_{x \to 0} \sqrt {\frac{{x - \sin \,x}}{{x + {{\sin }^2}x}}} $$ is equal to :
A
1
B
0
C
$$\infty $$
D
none of these
Answer :
0
View Solution
$${\text{Limit}} = \sqrt {\mathop {\lim }\limits_{x \to 0} \frac{{x - \sin \,x}}{{x + {{\sin }^2}x}}} = \sqrt {\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos \,x}}{{1 + \sin \,2x}}} = 0$$
16.
Let $$f\left( x \right) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} } ;\,1 < x < 26$$ be real valued function. Then $$f'\left( x \right)$$ for $$1 < x < 26$$ is :
A
$$0$$
B
$$\frac{1}{{\sqrt {x - 1} }}$$
C
$$2\sqrt {x - 1} - 5$$
D
none of these
Answer :
$$0$$
View Solution
$$\eqalign{
& f\left( x \right) = \sqrt {x - 1} + \sqrt {25 + \left( {x - 1} \right) - 10\sqrt {x - 1} } \cr
& = \sqrt {x - 1} + \sqrt {{{\left( {5 - \sqrt {x - 1} } \right)}^2}} \cr
& = \sqrt {x - 1} + \left| {5 - \sqrt {x - 1} } \right| \cr
& = 5\,\,\,\left[ {\because \,\sqrt {x - 1} < 5{\text{ for }}1 < x < 26} \right] \cr
& \therefore \,f'\left( x \right) = 0 \cr} $$
17.
If $$\mathop {\lim }\limits_{x \to 0} \frac{{\log \left( {3 + x} \right) - \log \left( {3 - x} \right)}}{x} = k$$ the value of $$k$$ is-
A
$$ - \frac{2}{3}$$
B
$$0$$
C
$$ - \frac{1}{3}$$
D
$$\frac{2}{3}$$
Answer :
$$\frac{2}{3}$$
View Solution
$$\eqalign{
& \mathop {\lim }\limits_{x \to 0} \frac{{\log \left( {3 + x} \right) - \log \left( {3 - x} \right)}}{x} = K\,\,\,\left[ {{\text{by L'Hospital rule}}} \right] \cr
& \mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{{3 + x}} - \frac{{ - 1}}{{3 - x}}}}{1} = K \cr
& \therefore \frac{2}{3} = K \cr} $$
18.
Let $$f:R \to R$$ be such that $${\text{ }}f\left( 1 \right) = 3$$ and $${\text{ }}f'\left( 1 \right) = 6.$$ Then $$\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}}$$ equals :
A
$$1$$
B
$${e^{\frac{1}{2}}}$$
C
$${e^2}$$
D
$${e^3}$$
Answer :
$${e^2}$$
View Solution
$$\eqalign{
& {\text{Given that }}f:R \to R{\text{ be such that }}f\left( 1 \right) = 3{\text{ and }}f'\left( 1 \right) = 6 \cr
& {\text{Then }}\mathop {\lim }\limits_{x \to 0} {\left( {\frac{{f\left( {1 + x} \right)}}{{f\left( 1 \right)}}} \right)^{\frac{1}{x}}} \cr
& = {e^{\mathop {\lim }\limits_{x \to 0} \frac{1}{x}\left[ {\log \,f\left( {1 + x} \right) - \log \,f\left( 1 \right)} \right]}} \cr
& = {e^{\mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{{f\left( {1 + x} \right)}}f'\left( {1 + x} \right)}}{1}}} \cr
& = {e^{\frac{{f'\left( 1 \right)}}{{f\left( 1 \right)}}}} \cr
& = {e^{\frac{6}{3}}} \cr
& = {e^2} \cr} $$
[ Using L Hospital rule ]
19.
The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{\int\limits_0^{{x^2}} {{{\sec }^2}tdt} }}{{x\,\sin \,x}}$$ is-
A
$$0$$
B
$$3$$
C
$$2$$
D
$$1$$
Answer :
$$1$$
View Solution
$$\eqalign{
& \mathop {\lim }\limits_{x \to 0} \frac{{\frac{d}{{dx}}\int\limits_0^{{x^2}} {{{\sec }^2}tdt} }}{{\frac{d}{{dx}}\left( {x\,\sin \,x} \right)}} \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{{{\sec }^2}{x^2}.2x}}{{\sin \,x + x\,\cos \,x}}\,\,\,\,\left[ {{\text{By L'Hospital rule}}} \right] \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\sec }^2}{x^2}}}{{\left( {\frac{{\sin \,x}}{x} + \cos \,x} \right)}} \cr
& = \frac{{2 \times 1}}{{1 + 2}} \cr
& = 1 \cr} $$
20.
If $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\left( {a - n} \right)nx - \tan \,x} \right)\sin \,nx}}{{{x^2}}} = 0$$ where $$n$$ is nonzero real number, then $$a$$ is equal to-
A
$$0$$
B
$$\frac{{n + 1}}{n}$$
C
$$n$$
D
$$n + \frac{1}{n}$$
Answer :
$$n + \frac{1}{n}$$
View Solution
We are given that
$$\mathop {\lim }\limits_{x \to 0} \frac{{\left[ {\left( {a - n} \right)nx - \tan \,x} \right]\sin \,nx}}{{{x^2}}} = 0$$
where $$n$$ is non zero real number
$$\eqalign{
& \Rightarrow \mathop {\lim }\limits_{x \to 0} n.\frac{{\sin \,nx}}{{nx}}\left[ {\left\{ {\left( {a - n} \right)n - \frac{{\tan \,x}}{x}} \right\}} \right] = 0 \cr
& \Rightarrow 1.n\left[ {\left( {a - n} \right)n - 1} \right] = 0 \cr
& \Rightarrow a = \frac{1}{n} + n\,\,{\text{or}}\,\,\,n + \frac{1}{n} \cr} $$