Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

21. $$\mathop {\lim }\limits_{x \to 1} \frac{{\sum\limits_{r = 1}^n {{x^r} - n} }}{{x - 1}}$$    is equal to :

A $$\frac{n}{2}$$
B $$\frac{{n\left( {n + 1} \right)}}{2}$$
C 1
D none of these
Answer :   $$\frac{{n\left( {n + 1} \right)}}{2}$$

22. $$\mathop {\lim }\limits_{n \to \infty } \frac{{{a^n} + {b^n}}}{{{a^n} - {b^n}}},$$     where $$a > b > 1,$$   is equal to :

A $$-1$$
B 1
C 0
D none of these
Answer :   1

23. If $$y = \left( {1 + {x^{\frac{1}{4}}}} \right)\left( {1 + {x^{\frac{1}{2}}}} \right)\left( {1 - {x^{\frac{1}{4}}}} \right),$$       then $$\frac{{dy}}{{dx}}$$  is equal to :

A $$1$$
B $$-1$$
C $$x$$
D $$\sqrt x $$
Answer :   $$-1$$

24. $$\mathop {\lim }\limits_{x \to \frac{\pi }{4}} {\left( {2 - \tan \,x} \right)^{\log \,\tan \,x}}$$     is equal to :

A 0
B 1
C $$e$$
D $${e^{ - 1}}$$
Answer :   1

25. $$\mathop {\lim }\limits_{x \to 0} \left\{ {\frac{{{{\log }_e}\left( {1 + x} \right)}}{{{x^2}}} + \frac{{x - 1}}{x}} \right\}$$      is equal to :

A $$\frac{1}{2}$$
B $$ - \frac{1}{2}$$
C 1
D none of these
Answer :   $$\frac{1}{2}$$

26. If $$\mathop {\lim }\limits_{x \to 0} {\left[ {1 + x\,\ell n{{\left( {1 + b} \right)}^2}} \right]^{\frac{1}{x}}} = 2b\,{\sin ^2}\theta ,\,b > 0$$        and $$\theta \in \left( { - \pi ,\,\,\pi } \right],$$   then the value of $$\theta $$ is -

A $$ \pm \frac{\pi }{4}$$
B $$ \pm \frac{\pi }{3}$$
C $$ \pm \frac{\pi }{6}$$
D $$ \pm \frac{\pi }{2}$$
Answer :   $$ \pm \frac{\pi }{2}$$

27. Let $$f\left( x \right) = {x^2} - 1,\,0 < x < 2$$      and $$2x + 3,\,2 \leqslant x < 3.$$    The quadratic equation whose roots are, $$\mathop {\lim }\limits_{x \to 2 - 0} f\left( x \right)$$   and $$\mathop {\lim }\limits_{x \to 2 + 0} f\left( x \right)$$   is :

A $${x^2} - 6x + 9 = 0$$
B $${x^2} - 10x + 21 = 0$$
C $${x^2} - 14x + 49 = 0$$
D none of these
Answer :   $${x^2} - 10x + 21 = 0$$

28. $$\mathop {\lim }\limits_{x \to 2} \left\{ {\left[ {2 - x} \right] + \left[ {x - 2} \right] - x} \right\}$$     is :

A $$0$$
B $$3$$
C $$ - 3$$
D does not exist
Answer :   $$ - 3$$

29. $$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\left[ {\frac{x}{2}} \right]}}{{\ln \left( {\sin \,x} \right)}}$$    (where $$\left[ . \right]$$ denotes the greatest integer function)

A does not exist
B equals $$1$$
C equals $$0$$
D equals $$ - 1$$
Answer :   equals $$0$$

30. Let $$f\left( x \right) = x - \left[ x \right],$$    where $$\left[ x \right]$$ denotes the greatest integer $$ \leqslant x$$  and $$g\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} - 1}}{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} + 1}},$$      then $$g\left( x \right)$$  is equal to :

A $$0$$
B $$1$$
C $$ - 1$$
D none of these
Answer :   $$ - 1$$