21.
$$\mathop {\lim }\limits_{x \to 1} \frac{{\sum\limits_{r = 1}^n {{x^r} - n} }}{{x - 1}}$$ is equal to :
A
$$\frac{n}{2}$$
B
$$\frac{{n\left( {n + 1} \right)}}{2}$$
C
1
D
none of these
Answer :
$$\frac{{n\left( {n + 1} \right)}}{2}$$
View Solution
$$\eqalign{
& {\text{Limit}} = \mathop {\lim }\limits_{x \to 1} \sum\limits_{r = 1}^n {\frac{{{x^r} - {1^r}}}{{x - 1}}} \cr
& = \sum\limits_{r = 1}^n {r \cdot {1^{r - 1}}} \cr
& = 1 + 2 + 3 + ..... + n \cr
& = \frac{{n\left( {n + 1} \right)}}{2} \cr} $$
22.
$$\mathop {\lim }\limits_{n \to \infty } \frac{{{a^n} + {b^n}}}{{{a^n} - {b^n}}},$$ where $$a > b > 1,$$ is equal to :
A
$$-1$$
B
1
C
0
D
none of these
Answer :
1
View Solution
$${\text{Limit}} = \mathop {\lim }\limits_{n \to \infty } \frac{{1 + {{\left( {\frac{b}{a}} \right)}^n}}}{{1 - {{\left( {\frac{b}{a}} \right)}^n}}} = 1$$ because $$0 < \frac{b}{a} < 1$$ implies $${\left( {\frac{b}{a}} \right)^n} \to 0$$ as $$n \to \infty $$
23.
If $$y = \left( {1 + {x^{\frac{1}{4}}}} \right)\left( {1 + {x^{\frac{1}{2}}}} \right)\left( {1 - {x^{\frac{1}{4}}}} \right),$$ then $$\frac{{dy}}{{dx}}$$ is equal to :
A
$$1$$
B
$$-1$$
C
$$x$$
D
$$\sqrt x $$
Answer :
$$-1$$
View Solution
$$\eqalign{
& {\text{We have,}} \cr
& y = \left( {1 + {x^{\frac{1}{4}}}} \right)\left( {1 + {x^{\frac{1}{2}}}} \right)\left( {1 - {x^{\frac{1}{4}}}} \right) \cr
& = \left( {1 - {x^{\frac{1}{2}}}} \right)\left( {1 + {x^{\frac{1}{2}}}} \right) \cr
& = 1 - x \cr
& \therefore \,\frac{{dy}}{{dx}} = - 1 \cr} $$
24.
$$\mathop {\lim }\limits_{x \to \frac{\pi }{4}} {\left( {2 - \tan \,x} \right)^{\log \,\tan \,x}}$$ is equal to :
A
0
B
1
C
$$e$$
D
$${e^{ - 1}}$$
Answer :
1
View Solution
$${\text{Limit}} = {\left( {2 - 1} \right)^{\log \,1}} = {1^0} = 1$$
25.
$$\mathop {\lim }\limits_{x \to 0} \left\{ {\frac{{{{\log }_e}\left( {1 + x} \right)}}{{{x^2}}} + \frac{{x - 1}}{x}} \right\}$$ is equal to :
A
$$\frac{1}{2}$$
B
$$ - \frac{1}{2}$$
C
1
D
none of these
Answer :
$$\frac{1}{2}$$
View Solution
$$\eqalign{
& {\text{Limit}} = \mathop {\lim }\limits_{x \to 0} \frac{{{{\log }_e}\left( {1 + x} \right) + {x^2} - x}}{{{x^2}}} \cr
& = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {x - \frac{1}{2}{x^2} + \frac{1}{3}{x^3} - .....} \right) + {x^2} - x}}{{{x^2}}} \cr
& = \frac{1}{2} \cr} $$
26.
If $$\mathop {\lim }\limits_{x \to 0} {\left[ {1 + x\,\ell n{{\left( {1 + b} \right)}^2}} \right]^{\frac{1}{x}}} = 2b\,{\sin ^2}\theta ,\,b > 0$$ and $$\theta \in \left( { - \pi ,\,\,\pi } \right],$$ then the value of $$\theta $$ is -
A
$$ \pm \frac{\pi }{4}$$
B
$$ \pm \frac{\pi }{3}$$
C
$$ \pm \frac{\pi }{6}$$
D
$$ \pm \frac{\pi }{2}$$
Answer :
$$ \pm \frac{\pi }{2}$$
View Solution
$$\eqalign{
& \mathop {\lim }\limits_{x \to 0} {\left[ {1 + x\,\ell n{{\left( {1 + b} \right)}^2}} \right]^{\frac{1}{x}}} = 2b\,{\sin ^2}\theta \cr
& \Rightarrow {e^{\mathop {\lim }\limits_{x \to 0} \,\frac{1}{x}\,\ell n\left[ {1 + x\,\ell n{{\left( {1 + b} \right)}^2}} \right]}} = 2b\,{\sin ^2}\theta \cr
& \Rightarrow {e^{\mathop {\lim }\limits_{x \to 0} \,\frac{{\ell n\left[ {1 + x\,\ell n\,\left( {1 + {b^2}} \right)} \right]}}{{x\,\ell n\,\left( {1 + {b^2}} \right)}} \times \ell n\,\left( {1 + {b^2}} \right)}} = 2b\,{\sin ^2}\theta \cr
& \Rightarrow {e^{\ell n\,\left( {1 + {b^2}} \right)}} = 2b\,{\sin ^2}\theta \cr
& \Rightarrow 1 + {b^2} = 2b\,{\sin ^2}\theta \cr
& \Rightarrow 2\,{\sin ^2}\theta = b + \frac{1}{b} \cr} $$
We know that $$2\,{\sin ^2}\theta \leqslant 2$$ and $$b + \frac{1}{b} \geqslant 2$$ for $$b>0$$
$$\eqalign{
& \therefore 2\,{\sin ^2}\theta = b + \frac{1}{b} = 2\,\,\,\,\,\,\, \Rightarrow {\sin ^2}\theta = 1 \cr
& {\text{As }}\theta \in \left( { - \pi ,\,\,\pi } \right], \cr
& \therefore \theta = \pm \frac{\pi }{2} \cr} $$
27.
Let $$f\left( x \right) = {x^2} - 1,\,0 < x < 2$$ and $$2x + 3,\,2 \leqslant x < 3.$$ The quadratic equation whose roots are, $$\mathop {\lim }\limits_{x \to 2 - 0} f\left( x \right)$$ and $$\mathop {\lim }\limits_{x \to 2 + 0} f\left( x \right)$$ is :
A
$${x^2} - 6x + 9 = 0$$
B
$${x^2} - 10x + 21 = 0$$
C
$${x^2} - 14x + 49 = 0$$
D
none of these
Answer :
$${x^2} - 10x + 21 = 0$$
View Solution
$$\eqalign{
& \mathop {\lim }\limits_{x \to 2 - 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 2 - 0} \left( {{x^2} - 1} \right) = {2^2} - 1 = 3 \cr
& \mathop {\lim }\limits_{x \to 2 + 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 2 + 0} \left( {2x + 3} \right) = 2 \times 2 + 3 = 7 \cr} $$
$$\therefore $$ Required quadratic equation is $${x^2} - 10x + 21 = 0$$
28.
$$\mathop {\lim }\limits_{x \to 2} \left\{ {\left[ {2 - x} \right] + \left[ {x - 2} \right] - x} \right\}$$ is :
A
$$0$$
B
$$3$$
C
$$ - 3$$
D
does not exist
Answer :
$$ - 3$$
View Solution
$$\eqalign{
& {\text{RH limit}} = \mathop {\lim }\limits_{h \to 0} \left\{ {\left[ {2 - \left( {2 + h} \right)} \right] + \left[ {\left( {2 + h} \right) - 2} \right] - \left( {2 + h} \right)} \right\} \cr
& = \mathop {\lim }\limits_{h \to 0} \left\{ {\left[ { - h} \right] + \left[ h \right] - 2 - h} \right\} \cr
& = \mathop {\lim }\limits_{h \to 0} \left\{ { - 1 + 0 - 2 - h} \right\} \cr
& = - 3 \cr
& {\text{LH limit}} = \mathop {\lim }\limits_{h \to 0} \left\{ {\left[ {2 - \left( {2 - h} \right)} \right] + \left[ {\left( {2 - h} \right) - 2} \right] - \left( {2 - h} \right)} \right\} \cr
& = \mathop {\lim }\limits_{h \to 0} \left\{ {\left[ h \right] + \left[ { - h} \right] - 2 + h} \right\} \cr
& = \mathop {\lim }\limits_{h \to 0} \left\{ {0 - 1 - 2 + h} \right\} \cr
& = - 3 \cr} $$
29.
$$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\left[ {\frac{x}{2}} \right]}}{{\ln \left( {\sin \,x} \right)}}$$ (where $$\left[ . \right]$$ denotes the greatest integer function)
A
does not exist
B
equals $$1$$
C
equals $$0$$
D
equals $$ - 1$$
Answer :
equals $$0$$
View Solution
$$\eqalign{
& \because \,\,\frac{\pi }{4} < 1,\,\,\,\therefore \,\left[ {\frac{\pi }{4}} \right] = 0 \cr
& \therefore \,\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\left[ {\frac{x}{2}} \right]}}{{\ln \left( {\sin \,x} \right)}} = 0 \cr} $$
30.
Let $$f\left( x \right) = x - \left[ x \right],$$ where $$\left[ x \right]$$ denotes the greatest integer $$ \leqslant x$$ and $$g\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} - 1}}{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} + 1}},$$ then $$g\left( x \right)$$ is equal to :
A
$$0$$
B
$$1$$
C
$$ - 1$$
D
none of these
Answer :
$$ - 1$$
View Solution
$$\eqalign{
& {\text{As }}0 \leqslant x - \left[ x \right] < 1\,\forall \,x\, \in \,R,\,0 \leqslant f\left( x \right) < 1 \cr
& \therefore \,\mathop {\lim }\limits_{n \to \infty } {\left\{ {f\left( x \right)} \right\}^{2n}} = 0 \cr
& {\text{Thus, for}}\,x\, \in \,R, \cr
& g\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} - 1}}{{{{\left\{ {f\left( x \right)} \right\}}^{2n}} + 1}} = \frac{{0 - 1}}{{0 + 1}} = - 1{\text{ }} \cr} $$