Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

41. The limit $$\mathop {\lim }\limits_{x \to 0} {\left( {\cos \,x} \right)^{\frac{1}{{\sin \,x}}}}$$   is equal to :

A $$e$$
B $${e^{ - 1}}$$
C $$1$$
D does not exist
Answer :   $$1$$

42. Let $$f\left( x \right) = 4$$   and $$f'\left( x \right) = 4.$$   Then $$\mathop {\lim }\limits_{x \to 2} \frac{{x\,f\left( 2 \right) - 2\,f\left( x \right)}}{{x - 2}}$$     is given by :

A $$2$$
B $$ - 2$$
C $$ - 4$$
D $$3$$
Answer :   $$ - 4$$

43. $$\mathop {\lim }\limits_{x \to \frac{\pi}{2}} \frac{{\cot \,x - \cos \,x}}{{{{\left( {\pi - 2x} \right)}^3}}}$$     equals:

A $$\frac{1}{4}$$
B $$\frac{1}{24}$$
C $$\frac{1}{16}$$
D $$\frac{1}{8}$$
Answer :   $$\frac{1}{16}$$

44. If $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sin \,nx} \right)\left[ {\left( {a - n} \right)nx - \tan \,x} \right]}}{{{x^2}}} = 0,$$        then the value of $$a = ?$$

A $$\frac{1}{n}$$
B $$n - \frac{1}{n}$$
C $$n + \frac{1}{n}$$
D none of these
Answer :   $$n + \frac{1}{n}$$

45. What is $$\mathop {\lim }\limits_{n \to \infty } \frac{{1 + 2 + 3 + ..... + n}}{{{1^2} + {2^2} + {3^2} + ..... + {n^2}}}$$       equal to ?

A $$5$$
B $$2$$
C $$1$$
D $$0$$
Answer :   $$0$$

46. $$\mathop {\lim }\limits_{\theta \to 0 + } \frac{{\sin \,\sqrt \theta }}{{\sqrt {\sin \,\theta } }}$$   is equal to :

A 0
B 1
C $$-1$$
D none of these
Answer :   1

47. If $$\frac{d}{{dx}}\left( {\frac{{1 + {x^4} + {x^8}}}{{1 + {x^2} + {x^4}}}} \right) = a{x^3} + bx,$$       then :

A $$a = 4,\,b = 2$$
B $$a = 4,\,b = - 2$$
C $$a = - 2,\,b = 4$$
D none of these
Answer :   $$a = 4,\,b = - 2$$

48. If $$f\left( x \right)$$  is continuous and $$f\left( {\frac{9}{2}} \right) = \frac{2}{9}$$   then $$\mathop {\lim }\limits_{x \to 0} f\left( {\frac{{1 - \cos \,3x}}{{{x^2}}}} \right)$$    is equal to :

A $$\frac{9}{2}$$
B $$\frac{2}{9}$$
C 0
D none of these
Answer :   $$\frac{2}{9}$$

49. $$\mathop {\lim }\limits_{x \to 1} \frac{{\left( {1 - x} \right)\left( {1 - {x^2}} \right).....\left( {1 - {x^{2n}}} \right)}}{{{{\left\{ {\left( {1 - x} \right)\left( {1 - {x^2}} \right).....\left( {1 - {x^n}} \right)} \right\}}^2}}},\,n\, \in \,N,$$          equals :

A $${}^{2n}{P_n}$$
B $${}^{2n}{C_n}$$
C $$\left( {2n} \right)!$$
D none of these
Answer :   $${}^{2n}{C_n}$$

50. $$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2}}}{{3x - 2}} - \frac{x}{3}} \right) = ?$$

A $$\frac{1}{3}$$
B $$\frac{2}{3}$$
C $$\frac{{ - 2}}{3}$$
D $$\frac{2}{9}$$
Answer :   $$\frac{2}{9}$$