Limits MCQ Questions & Answers in Calculus | Maths

Learn Limits MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

71. $$\mathop {\lim }\limits_{x \to 0} \left( {\frac{{10\,\sin \,9x}}{{9\,\sin \,10x}}} \right)\left( {\frac{{8\,\sin \,7x}}{{7\,\sin \,8x}}} \right)\left( {\frac{{6\,\sin \,5x}}{{5\,\sin \,6x}}} \right)\left( {\frac{{4\,\sin \,3x}}{{3\,\sin \,4x}}} \right)\left( {\frac{{\sin \,x}}{{\sin \,2x}}} \right) = ?$$

A $$\frac{{63}}{{256}}$$
B $$\frac{1}{6}$$
C $$\frac{6}{5}$$
D $$\frac{1}{2}$$
Answer :   $$\frac{1}{2}$$

72. $$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\left[ {1 - \tan \left( {\frac{x}{2}} \right)} \right]\left[ {1 - \sin \,x} \right]}}{{\left[ {1 + \tan \left( {\frac{x}{2}} \right)} \right]{{\left[ {\pi - 2x} \right]}^3}}}$$      is-

A $$\infty $$
B $$\frac{1}{{8}}$$
C $$0$$
D $$\frac{1}{{32}}$$
Answer :   $$\frac{1}{{32}}$$

73. $$\mathop {\lim }\limits_{n \to \infty } \frac{{{5^{n + 1}} + {3^n} - {2^{2n}}}}{{{5^n} + {2^n} + {3^{2n + 3}}}}$$     is equal to :

A $$5$$
B $$3$$
C $$1$$
D $$0$$
Answer :   $$0$$

74. $$\mathop {\lim }\limits_{x \to 0} \frac{{\left( {1 - \cos \,2x} \right)\left( {3 + \cos \,x} \right)}}{{x\,\tan \,4x}}$$      is equal to-

A $$2$$
B $$\frac{1}{2}$$
C $$4$$
D $$3$$
Answer :   $$2$$

75. Let $$f:{\bf{R}} \to {\bf{R}}$$   be a positive increasing function with $$\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( {3x} \right)}}{{f\left( x \right)}} = 1.$$    Then $$\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( {2x} \right)}}{{f\left( x \right)}} = ?$$

A $$\frac{2}{3}$$
B $$\frac{3}{2}$$
C $$3$$
D $$1$$
Answer :   $$1$$

76. If \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{{{\left[ x \right]}^2} + \sin \left[ x \right]}}{{\left[ x \right]}}\,{\rm{ for }}\left[ x \right] \ne 0\\ \,\,\,\,\,\,\,\,\,0{\rm{ }}\,\,\,\,\,\,\,\,\,\,{\rm{ for }}\left[ x \right] = 0 \end{array} \right.,{\rm{where }}\left[ x \right]\]        denotes the greatest integer less than or equal to $$x,$$ then $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$   equals :

A $$1$$
B $$0$$
C $$ - 1$$
D none of these
Answer :   none of these

77. $$\mathop {\lim }\limits_{x \to 0} \frac{{\sin \left( {\pi \,{{\cos }^2}\,x} \right)}}{{{x^2}}}$$    is equal to-

A $$ - \pi $$
B $$\pi $$
C $$\frac{\pi }{2}$$
D $$1$$
Answer :   $$\pi $$

78. $$\mathop {\lim }\limits_{x \to \frac{\pi }{4}} \frac{{\int\limits_2^{{{\sec }^2}\,x} {f\left( t \right)dt} }}{{{x^2} - \frac{{{\pi ^2}}}{{16}}}}$$     equals:

A $$\frac{8}{\pi }f\left( 2 \right)$$
B $$\frac{2}{\pi }f\left( 2 \right)$$
C $$\frac{2}{\pi }f\left( {\frac{1}{2}} \right)$$
D $$4f\left( 2 \right)$$
Answer :   $$\frac{8}{\pi }f\left( 2 \right)$$

79. If $${x_1} = 3$$  and $${x_{n + 1}} = \sqrt {2 + {x_n}} ,\,n \geqslant 1,$$     then $$\mathop {\lim }\limits_{n \to \infty } {x_n}$$  is equal to :

A $$ - 1$$
B $$2$$
C $$\sqrt 5 $$
D $$3$$
Answer :   $$2$$

80. If $$\left\{ x \right\}$$ denotes the fractional part of $$x,$$ then $$\mathop {\lim }\limits_{x \to \left[ a \right]} \frac{{{e^{\left\{ x \right\}}} - \left\{ x \right\} - 1}}{{{{\left\{ x \right\}}^2}}},$$     where $$\left[ a \right]$$ denotes the integral part of $$a,$$ is equal to:

A $$0$$
B $$\frac{1}{2}$$
C $$e - 2$$
D none of these
Answer :   none of these