3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
1.
Let $$P,\,Q,\,R$$ and $$S$$ be the points on the plane with position vectors $$ - 2\hat i - \hat j,\,4\hat i,\,3\hat i + 3\hat j$$ and $$ - 3\hat i + 2\hat j$$ respectively, The quadrilateral $$PQRS$$ must be a :
A
parallelogram, which is neither a rhombus nor a rectangle
B
square
C
rectangle, but not a square
D
rhombus, but not a square
Answer :
parallelogram, which is neither a rhombus nor a rectangle
We have $$\overrightarrow {PQ} = 6\hat i + \hat j,\,\overrightarrow {QR} = - \hat i + 3\hat j,\,\overrightarrow {SR} = 6\hat i + \hat j,\,\overrightarrow {PS} = - \hat i + 3\hat j$$
$$\eqalign{
& \Rightarrow \overrightarrow {PQ} = \overrightarrow {SR} \,;\,\overrightarrow {QR} = \overrightarrow {PS} \,\,{\text{and }}\overrightarrow {PQ} .\overrightarrow {PS} \ne 0 \cr
& {\text{Also }}\left| {\overrightarrow {PQ} } \right| \ne \left| {\overrightarrow {QR} } \right| \cr} $$
$$ \Rightarrow PQRS$$ is a parallelogram but neither a rhombus nor a rectangle.
2.
The projections of a vector on the three coordinate axis are $$6,\,- 3,\, 2$$ respectively. The direction cosines of the vector are :
A
$$\frac{6}{5},\,\frac{{ - 3}}{5},\,\frac{2}{5}$$
B
$$\frac{6}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$
C
$$\frac{{ - 6}}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7}$$
Let $$P\left( {{x_1},\,{y_1},\,{z_1}} \right)$$ and $$Q\left( {{x_2},\,{y_2},\,{z_2}} \right)$$ be the initial and final points of the vector whose projections on the three coordinate axes are $$6,\, - 3,\,2$$
then
$${x_2} - {x_1} = 6\,;\,\,\,{y_2} - {y_1} = - 3\,;\,\,\,{z_2} - \,{z_1} = 2$$
So that direction ratios of $$\overrightarrow {PQ} $$ are $$6,\, - 3,\,2$$
$$\therefore $$ Direction cosines of $$\overrightarrow {PQ} $$ are
$$\eqalign{
& \frac{6}{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }},\,\frac{{ - 3}}{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }},\,\frac{2}{{\sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {2^2}} }} \cr
& = \frac{6}{7},\,\frac{{ - 3}}{7},\,\frac{2}{7} \cr} $$
3.
If $$\overrightarrow a $$ and $$\overrightarrow b $$ are two vectors of magnitude $$2$$ inclined at an angle $${60^ \circ }$$ then the
angle between $$\overrightarrow a $$ and $$\overrightarrow a + \overrightarrow b $$ is :
A
$${30^ \circ }$$
B
$${60^ \circ }$$
C
$${45^ \circ }$$
D
none of these
Answer :
$${30^ \circ }$$
Here, $$\left| {\overrightarrow a } \right| = 2 = \left| {\overrightarrow b } \right|$$ and $$\overrightarrow a .\overrightarrow b = 2.2\cos \,{60^ \circ } = 2$$
If the angle between $$\overrightarrow a $$ and $$\left( {\overrightarrow a + \overrightarrow b } \right)$$ be $$\theta $$ then
$$\eqalign{
& \,\,\,\,\,\,\,\,\,\,\overrightarrow a .\left( {\overrightarrow a + \overrightarrow b } \right) = \left| {\overrightarrow a } \right|\,\,\left| {\overrightarrow a + \overrightarrow b } \right|\cos \,\theta \cr
& {\text{or }}{\left| {\overrightarrow a } \right|^2}\, + \overrightarrow a .\overrightarrow b = 2\,\left| {\overrightarrow a + \overrightarrow b } \right|\cos \,\theta \cr
& {\text{or }}4 + 2 = 2\left| {\overrightarrow a + \overrightarrow b } \right|\cos \,\theta \cr
& \therefore \,\cos \,\theta = \frac{3}{{\left| {\overrightarrow a + \overrightarrow b } \right|}} \cr
& {\text{Now, }}{\left| {\overrightarrow a + \overrightarrow b } \right|^2} = {\left( {\overrightarrow a + \overrightarrow b } \right)^2} \cr
& = {\overrightarrow a ^2} + {\overrightarrow b ^2} + 2\overrightarrow a .\overrightarrow b \cr
& = 4 + 4 + 2.2 \cr
& = 12 \cr
& \therefore \,\,\,\left| {\overrightarrow a + \overrightarrow b } \right| = 2\sqrt 3 \cr
& \therefore \,\,\cos \,\theta = \frac{3}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\,\,\,\,\, \Rightarrow \theta = {30^ \circ } \cr} $$
4.
Let $$\overrightarrow a = 2\overrightarrow i - \overrightarrow j + \overrightarrow k ,\,\overrightarrow b = \overrightarrow i + 2\overrightarrow j - \overrightarrow k $$ and $$\overrightarrow c = \overrightarrow i + \overrightarrow j - 2\overrightarrow k .$$ A vector in the plane of $$\overrightarrow b $$ and $$\overrightarrow c $$ whose projection on $$\overrightarrow a $$ has the magnitude $$\sqrt {\frac{2}{3}} $$ is :
A
$$2\overrightarrow i + 3\overrightarrow j - 3\overrightarrow k $$
B
$$2\overrightarrow i + 3\overrightarrow j + 3\overrightarrow k $$
C
$$ - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k $$
D
$$2\overrightarrow i + \overrightarrow j + 5\overrightarrow k $$
Answer :
$$ - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k $$
Let $$\overrightarrow p = \lambda \overrightarrow b + \mu \overrightarrow c $$
The projection of $$\overrightarrow p $$ on $$\overrightarrow a = \frac{{\overrightarrow p .\overrightarrow a }}{{\left| {\overrightarrow a } \right|}} = \sqrt {\frac{2}{3}} ......\left( 1 \right)$$
$$\eqalign{
& \because \,\overrightarrow p = \lambda \left( {\overrightarrow i + 2\overrightarrow j - \overrightarrow k } \right) + \mu \left( {\overrightarrow i + \overrightarrow j - 2\overrightarrow k } \right) \cr
& \therefore \,\overrightarrow p .\overrightarrow a = 2\left( {\lambda + \mu } \right) - 1\left( {2\lambda + \mu } \right) + 1\left( { - \lambda - 2\mu } \right) = - \lambda - \mu \cr
& \therefore \,\left( 1 \right){\text{gives}}\frac{{ - \lambda - \mu }}{{\sqrt {{2^2} + {1^2} + {1^2}} }} = \sqrt {\frac{2}{3}} \,\,\,{\text{or }}\lambda + \mu = - 2 \cr
& \therefore \overrightarrow p = \lambda \left( {\overrightarrow i + 2\overrightarrow j - \overrightarrow k } \right) + \mu \left( {\overrightarrow i + \overrightarrow j - 2\overrightarrow k } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\lambda + \mu } \right)\overrightarrow i + \left( {2\lambda + \mu } \right)\overrightarrow j - \left( {\lambda + 2\mu } \right)\overrightarrow k \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - 2\overrightarrow i + \left( {\lambda - 2} \right)\overrightarrow j + \left( {\lambda + 4} \right)\overrightarrow k , \cr} $$
where $$\lambda $$ is a scalar parameter.
When $$\lambda = 1,\,\overrightarrow p = - 2\overrightarrow i - \overrightarrow j + 5\overrightarrow k .$$ Other options hold for no real $$\lambda .$$
5.
Two system of rectangular axes have the same origin. If a plane cuts them at distances $$a,\,b,\,c$$ and $$a',\,b',\,c'$$ from the origin then :
6.
If \[\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \] are noncoplanar nonzero vectors then \[\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow c } \right) + \left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow b \times \overrightarrow a } \right) + \left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow c \times \overrightarrow b } \right)\] is equal to :
A
\[{\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]^2}\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
B
\[\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
C
\[\overrightarrow 0 \]
D
none of these
Answer :
\[\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)\]
\[\begin{array}{l}
\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow c } \right) = \left( {\overrightarrow a \times \overrightarrow b .\overrightarrow c } \right)\overrightarrow a - \left( {\overrightarrow a \times \overrightarrow b .\overrightarrow a } \right)\overrightarrow c \\
= \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow a - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow c \\
= \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\overrightarrow a \\
{\rm{Similarly,}}\,\left( {\overrightarrow b \times \overrightarrow c } \right) \times \left( {\overrightarrow b \times \overrightarrow a } \right) = \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\overrightarrow b \\
\left( {\overrightarrow c \times \overrightarrow a } \right) \times \left( {\overrightarrow c \times \overrightarrow b } \right) = \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]\overrightarrow c \\
\therefore {\rm{ the\, expression}} = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right)
\end{array}\]
7.
Let $$\vec p$$ and $$\vec q$$ be the position vectors of $$P$$ and $$Q$$ respectively, with respect to $$O$$ and $$\left| {\vec p} \right| = p,\,\left| {\vec q} \right| = q.$$ The points $$R$$ and $$S$$ divide $$PQ$$ internally and externally in the ratio 2 : 3 respectively. If $$OR$$ and $$OS$$ are perpendicular then :
8.
Let $$\vec \alpha = 3\hat i + \hat j$$ and $$\vec \beta = 2\hat i - \hat j + 3\hat k.$$
If $$\vec \beta = {{\vec \beta }_1} - {{\vec \beta }_2},$$ where $${{\vec \beta }_1}$$ is parallel to $${\vec \alpha }$$ and $${{\vec \beta }_2}$$ is perpendicular to $${\vec \alpha },$$ then $${{\vec \beta }_1} \times {{\vec \beta }_2}$$ is equal to :
A
$$ - 3\hat i + 9\hat j + 5\hat k$$
B
$$3\hat i - 9\hat j - 5\hat k$$
C
$$\frac{1}{2}\left( { - 3\hat i + 9\hat j + 5\hat k} \right)$$
D
$$\frac{1}{2}\left( {3\hat i - 9\hat j + 5\hat k} \right)$$
9.
Let $$A = \left( {1,\,2,\,2} \right),\,B = \left( {2,\,3,\,6} \right)$$ and $$C = \left( {3,\,4,\,12} \right).$$ The direction cosines of a line equally inclined with $$OA,\,OB$$ and $$OC$$ where $$O$$ is the origin, are :
A
$$\frac{1}{{\sqrt 2 }},\,\frac{{ - 1}}{{\sqrt 2 }},\,0$$
B
$$\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }},\,0$$
C
$$\frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}$$
10.
Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ be three unit vectors and $$\overrightarrow a .\overrightarrow b = \overrightarrow a .\overrightarrow c = 0.$$ If the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is $$\frac{\pi }{3}$$ then $$\left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right|$$ is equal to :
A
$$\frac{{\sqrt 3 }}{2}$$
B
$$\frac{1}{2}$$
C
$$1$$
D
none of these
Answer :
$$\frac{{\sqrt 3 }}{2}$$
$$\eqalign{
& \overrightarrow a \bot \overrightarrow b ,\,\overrightarrow a \bot \overrightarrow c ,\,{\text{i}}{\text{.e}}{\text{., }}\overrightarrow a ||\left( {\overrightarrow b \times \overrightarrow c } \right){\text{ and }}\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2} \cr
& \left| {\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]} \right| = \left| {\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)} \right| = \left| {\overrightarrow a } \right|\left| {\overrightarrow b \times \overrightarrow c } \right|\cos \,{0^ \circ } = 1.\frac{{\sqrt 3 }}{2}.1 = \frac{{\sqrt 3 }}{2} \cr} $$