3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

111. Let $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   be non-coplanar vectors and $$\overrightarrow p = \frac{{\overrightarrow b \times \overrightarrow c }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\overrightarrow q = \frac{{\overrightarrow c \times \overrightarrow a }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\overrightarrow r = \frac{{\overrightarrow a \times \overrightarrow b }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}.$$
What is the value of $$\left( {\overrightarrow a - \overrightarrow b - \overrightarrow c } \right).\overrightarrow p + \left( {\overrightarrow b - \overrightarrow c - \overrightarrow a } \right).\overrightarrow q + \left( {\overrightarrow c - \overrightarrow a - \overrightarrow b } \right).\overrightarrow r \,\, = ?$$

A $$0$$
B $$ - 3$$
C $$3$$
D $$ - 9$$
Answer :   $$3$$

112. If $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right)$$       where $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ are any three vectors such that $$\overrightarrow a .\overrightarrow b \ne 0,\,\overrightarrow b .\overrightarrow c \ne 0$$     then $$\overrightarrow a $$ and $$\overrightarrow c $$ are :

A inclined at an angle of $$\frac{\pi }{3}$$ between them
B inclined at an angle of $$\frac{\pi }{6}$$ between them
C perpendicular
D parallel
Answer :   parallel

113. Let $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ be three non-coplanar vectors, and let and $$\overrightarrow p ,\,\overrightarrow q $$  and $$\overrightarrow r $$ be the vectors defined by the relations $$\overrightarrow p = \frac{{\overrightarrow b \times \overrightarrow c }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}},\,\overrightarrow q = \frac{{\overrightarrow c \times \overrightarrow a }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$         and $$\overrightarrow r = \frac{{\overrightarrow a \times \overrightarrow b }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}.$$    Then the value of the expression $$\left( {\overrightarrow a + \overrightarrow b } \right).\overrightarrow p + \left( {\overrightarrow b + \overrightarrow c } \right).\overrightarrow q + \left( {\overrightarrow c + \overrightarrow a } \right).\overrightarrow r $$          is equal to :

A 0
B 1
C 2
D 3
Answer :   3

114. If $$\overrightarrow {OA} = \overrightarrow a \,;\,\overrightarrow {OB} = \overrightarrow b \,;\,\overrightarrow {OC} = 2\overrightarrow a + 3\overrightarrow b \,;\overrightarrow {OD} = \overrightarrow a - 2\overrightarrow b ,$$           the length of $$\overrightarrow {OA} $$  is three times the length of $$\overrightarrow {OB} $$  and $$\overrightarrow {OA} $$  is perpendicular to $$\overrightarrow {DB} $$  then $$\left( {\overrightarrow {BD} \times \overrightarrow {AC} } \right).\left( {\overrightarrow {OD} \times \overrightarrow {OC} } \right)$$     is :

A $$7{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$
B $$42{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$
C $$0$$
D None of these
Answer :   $$42{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$

115. If $$\left| {\overrightarrow a } \right| = 5,\,\left| {\overrightarrow a - \overrightarrow b } \right| = 8$$     and $$\left| {\overrightarrow a + \overrightarrow b } \right| = 10$$    then $$\left| {\overrightarrow b } \right|$$ is :

A $$1$$
B $$\sqrt {57} $$
C $$3$$
D none of these
Answer :   $$\sqrt {57} $$

116. A vector of magnitude $$3$$, bisecting the angle between the vectors $$\overrightarrow a = 2\hat i + \hat j - \hat k$$    and $$\overrightarrow b = \hat i - 2\hat j + \hat k$$    and making an obtuse angle with $$\overrightarrow b $$ is :

A $$\frac{{3\hat i - \hat j}}{{\sqrt 6 }}$$
B $$\frac{{\hat i + 3\hat j - 2\hat k}}{{\sqrt {14} }}$$
C $$\frac{{3\left( {\hat i + 3\hat j - 2\hat k} \right)}}{{\sqrt {14} }}$$
D $$\frac{{3\hat i - \hat j}}{{\sqrt {10} }}$$
Answer :   $$\frac{{3\left( {\hat i + 3\hat j - 2\hat k} \right)}}{{\sqrt {14} }}$$

117. If $$\left| {\vec a} \right| = 5,\,\left| {\vec b} \right| = 4,\,\left| {\vec c} \right| = 3$$     thus what will be the value of $$\left| {\vec a.\vec b + \vec b.\vec c + \vec c.\vec a} \right|,$$    given that $$\vec a + \vec b + \vec c = 0$$

A $$25$$
B $$50$$
C $$ - 25$$
D $$ - 50$$
Answer :   $$25$$

118. Let $$\vec u = \hat i + \hat j,\,\vec v = \hat i - \hat j$$     and $$\vec w = \hat i + 2\hat j + 3\hat k.$$    If $${\hat n}$$ is a unit vector such that $$\vec u.\hat n = 0$$  and $$\vec v.\hat n = 0,$$   then $$\left| {\vec w.\hat n} \right|$$  is equal to :

A $$3$$
B $$0$$
C $$1$$
D $$2$$
Answer :   $$3$$

119. Let two non-collinear unit vectors $$\hat a$$ and $$\hat b$$ form an acute angle. A point $$P$$ moves so that at any time $$t$$ the position vector $$\overrightarrow {OP} $$  (where $$O$$ is the origin) is given by $$\hat a\,\cos \,t + \hat b\,\sin \,t.$$    When $$P$$ is farthest from origin $$O,$$  let $$M$$ be the length of $$\overrightarrow {OP} $$  and $${\hat u}$$ be the unit vector along $$\overrightarrow {OP} .$$   Then,

A $$\hat u = \frac{{\hat a + \hat b}}{{\left| {\hat a + \hat b} \right|}}{\text{ and }}M = {\left( {1 + \hat a.\hat b} \right)^{\frac{1}{2}}}$$
B $$\hat u = \frac{{\hat a - \hat b}}{{\left| {\hat a - \hat b} \right|}}{\text{ and }}M = {\left( {1 + \hat a.\hat b} \right)^{\frac{1}{2}}}$$
C $$\hat u = \frac{{\hat a + \hat b}}{{\left| {\hat a + \hat b} \right|}}{\text{ and }}M = {\left( {1 + 2\hat a.\hat b} \right)^{\frac{1}{2}}}$$
D $$\hat u = \frac{{\hat a - \hat b}}{{\left| {\hat a - \hat b} \right|}}{\text{ and }}M = {\left( {1 + 2\hat a.\hat b} \right)^{\frac{1}{2}}}$$
Answer :   $$\hat u = \frac{{\hat a + \hat b}}{{\left| {\hat a + \hat b} \right|}}{\text{ and }}M = {\left( {1 + \hat a.\hat b} \right)^{\frac{1}{2}}}$$

120. If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three noncoplanar vectors represented by concurrent edges of a parallelepiped of volume $$4$$ then $$\left( {\overrightarrow a + \overrightarrow b } \right).\left( {\overrightarrow b \times \overrightarrow c } \right) + \left( {\overrightarrow b + \overrightarrow c } \right).\left( {\overrightarrow c \times \overrightarrow a } \right) + \left( {\overrightarrow c + \overrightarrow a } \right)\left( {\overrightarrow a \times \overrightarrow b } \right)$$              is equal to :

A $$12$$
B $$4$$
C $$ \pm 12$$
D $$0$$
Answer :   $$ \pm 12$$