3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

121. Let $$\vec a,\,\vec b$$  and $$\vec c$$ be three unit vectors such that $$\vec a \times \left( {\vec b \times \vec c} \right) = \frac{{\sqrt 3 }}{2}\left( {\vec b + \vec c} \right).$$      If $$\vec b$$ is not parallel to $$\vec c$$ then the angle between $$\vec a$$ and $$\vec b$$ is :

A $$\frac{{2\pi }}{3}$$
B $$\frac{{5\pi }}{6}$$
C $$\frac{{3\pi }}{4}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{{5\pi }}{6}$$

122. Let $$\overrightarrow p ,\,\overrightarrow q ,\,\overrightarrow r $$   be three mutually perpendicular vectors of the same magnitude. If a vector $$\overrightarrow x $$ satisfies the equation $$\overrightarrow p \times \left\{ {\left( {\overrightarrow x - \overrightarrow q } \right) \times \overrightarrow p } \right\} + \overrightarrow q \times \left\{ {\left( {\overrightarrow x - \overrightarrow r } \right) \times \overrightarrow q } \right\} + \overrightarrow r \times \left\{ {\left( {\overrightarrow x - \overrightarrow p } \right) \times \overrightarrow r } \right\} = \overrightarrow 0 $$                 then $$\overrightarrow x $$ is given by :

A $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q - 2\overrightarrow r } \right)$$
B $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
C $$\frac{1}{3}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$
D $$\frac{1}{3}\left( {2\overrightarrow p + \overrightarrow q - \overrightarrow r } \right)$$
Answer :   $$\frac{1}{2}\left( {\overrightarrow p + \overrightarrow q + \overrightarrow r } \right)$$

123. Let $$\overrightarrow {AB} = 3\overrightarrow i + \overrightarrow j - \overrightarrow k $$     and $$\overrightarrow {AC} = \overrightarrow i - \overrightarrow j + 3\overrightarrow k .$$     If the point $$P$$ on the line segment $$BC$$  is equidistant from $$AB$$  and $$AC$$  then $$\overrightarrow {AP} $$  is :

A $$2\overrightarrow i - \overrightarrow k $$
B $$\overrightarrow i - 2\overrightarrow k $$
C $$2\overrightarrow i + \overrightarrow k $$
D none of these
Answer :   $$2\overrightarrow i + \overrightarrow k $$

124. The position vectors of the vertices $$A,\,B,\,C$$   of a triangle are $$\overrightarrow i - \overrightarrow j - 3\overrightarrow k ,\,2\overrightarrow i + \overrightarrow j - 2\overrightarrow k $$       and $$ - 5\overrightarrow i + 2\overrightarrow j - 6\overrightarrow k $$     respectively. The length of the bisector $$AD$$  of the angle $$BAC$$  where $$D$$ is on the line segment $$BC,$$  is :

A $$\frac{{15}}{2}$$
B $$\frac{1}{4}$$
C $$\frac{{11}}{2}$$
D none of these
Answer :   $$\frac{{15}}{2}$$

125. The value of $$'a\,'$$ so that the volume of parallelepiped formed by $$\hat i + a\hat j + \hat k,\,\hat j + a\hat k$$    and $$a\hat i + \hat k$$   becomes minimum is :

A $$ - 3$$
B $$3$$
C $$\frac{1}{{\sqrt 3 }}$$
D $${\sqrt 3 }$$
Answer :   $$\frac{1}{{\sqrt 3 }}$$

126. The equation of the locus of the point $$\left( {1 + \frac{r}{4},\, - 1 + \frac{r}{3},\,2} \right),$$     where $$r\, \in \,R,$$   is given by :

A $$\frac{{x - 1}}{4} = \frac{{y + 1}}{3} = \frac{{z - 2}}{0}$$
B $$\frac{{x - 1}}{3} = \frac{{y + 1}}{4} = \frac{{z - 2}}{0}$$
C $$4x - 3y = 7$$
D $$z = 2$$
Answer :   $$\frac{{x - 1}}{3} = \frac{{y + 1}}{4} = \frac{{z - 2}}{0}$$

127. For any vector $$\overrightarrow p ,$$ the value of $$\frac{3}{2}\left\{ {{{\left| {\overrightarrow p \times \hat i} \right|}^2} + {{\left| {\overrightarrow p \times \hat j} \right|}^2} + {{\left| {\overrightarrow p \times \hat k} \right|}^2}} \right\}{\text{ is :}}$$

A $${\overrightarrow p ^2}$$
B $$2{\overrightarrow p ^2}$$
C $$3{\overrightarrow p ^2}$$
D $$4{\overrightarrow p ^2}$$
Answer :   $$3{\overrightarrow p ^2}$$

128. The number of real values of $$k$$ for which the lines $$\frac{{x - 1}}{4} = \frac{{y + 1}}{3} = \frac{z}{k}$$     and $$\frac{x}{1} = \frac{{y - k}}{3} = \frac{{z - 1}}{{ - 2}}$$     are coplanar, is :

A 2
B 1
C 3
D 0
Answer :   2

129. If the straight lines $$x = 1 + s,\,y = - 3 - \lambda s,\,z = 1 + \lambda s$$        and $$x = \frac{t}{2},\,y = 1 + t,\,z = 2 - t$$      with parameters $$s$$ and $$t$$ respectively, are co-planar, then $$\lambda $$ equals.

A $$0$$
B $$ - 1$$
C $$ - \frac{1}{2}$$
D $$ - 2$$
Answer :   $$ - 2$$

130. If $$\overrightarrow a $$ and $$\overrightarrow b $$ are unit vectors and $$\alpha $$ is the angle between them then $$\cos \frac{\alpha }{2}$$  is equal to :

A $$\frac{1}{2}\left| {\overrightarrow a + \overrightarrow b } \right|$$
B $$\frac{1}{2}\left| {\overrightarrow a - \overrightarrow b } \right|$$
C $$\left| {\overrightarrow a + \overrightarrow b } \right|$$
D none of these
Answer :   $$\frac{1}{2}\left| {\overrightarrow a + \overrightarrow b } \right|$$