3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths

Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

11. If the vectors $$\overrightarrow {AB} = 3\hat i + 4\hat k$$    and $$\overrightarrow {AC} = 5\hat i - 2\hat j + 4\hat k$$     are the sides of a triangle $$ABC,$$   then the length of the median through $$A$$ is :

A $$\sqrt {18} $$
B $$\sqrt {72} $$
C $$\sqrt {33} $$
D $$\sqrt {45} $$
Answer :   $$\sqrt {33} $$

12. The position vectors of two vertices and the centroid of a triangle are $$\overrightarrow i + \overrightarrow j ,\,2\overrightarrow i - \overrightarrow j + \overrightarrow k $$     and $$\overrightarrow k $$ respectively. The position vector of the third vertex of the triangle is :

A $$ - 3\overrightarrow i + 2\overrightarrow k $$
B $$3\overrightarrow i - 2\overrightarrow k $$
C $$\overrightarrow i + \frac{2}{3}\overrightarrow k $$
D none of these
Answer :   $$ - 3\overrightarrow i + 2\overrightarrow k $$

13. $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three vectors of which every pair is noncollinear. If the vector $$\overrightarrow a + \overrightarrow b $$   and $$\overrightarrow b + \overrightarrow c $$   are collinear with $$\overrightarrow c $$ and $$\overrightarrow a $$ respectively then $$\overrightarrow a + \overrightarrow b + \overrightarrow c $$   is :

A a unit vector
B the null vector
C equally inclined to $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$
D none of these
Answer :   the null vector

14. What is the interior acute angle of the parallelogram whose sides are represented by the vectors $$\frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j + \hat k$$     and $$\frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j + \hat k\,?$$

A $${60^ \circ }$$
B $${45^ \circ }$$
C $${30^ \circ }$$
D $${15^ \circ }$$
Answer :   $${60^ \circ }$$

15. If \[\left| \begin{array}{l} a\,\,\,\,{a^2}\,\,\,\,\,1 + {a^3}\\ b\,\,\,\,{b^2}\,\,\,\,\,1 + {b^3}\\ c\,\,\,\,\,{c^2}\,\,\,\,\,1 + {c^3} \end{array} \right| = 0\]     and vectors $$\left( {1,\,a,{a^2}} \right),\,\left( {1,\,b,{b^2}} \right)$$     and $$\left( {1,\,c,{c^2}} \right)$$  are non-coplanar, then the product $$abc$$  equals :

A $$0$$
B $$2$$
C $$ - 1$$
D $$1$$
Answer :   $$ - 1$$

16. Let $$\overrightarrow r = \left( {\overrightarrow a \times \overrightarrow b } \right)\sin \,x + \left( {\overrightarrow b \times \overrightarrow c } \right)\cos \,y + 2\left( {\overrightarrow c \times \overrightarrow a } \right)$$           where $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$   are three non-coplanar vectors. If $$\overrightarrow r $$ is perpendicular to $$\overrightarrow a + \,\overrightarrow b + \,\overrightarrow c $$   then minimum value of $${x^2} + {y^2}$$   is :

A $${\pi ^2}$$
B $$\frac{{{\pi ^2}}}{4}$$
C $$\frac{{5{\pi ^2}}}{4}$$
D none of these
Answer :   $$\frac{{5{\pi ^2}}}{4}$$

17. Let $$\overrightarrow \lambda = \overrightarrow a \times \left( {\overrightarrow b + \overrightarrow c } \right),\,\overrightarrow \mu = \overrightarrow b \times \left( {\overrightarrow c + \overrightarrow a } \right)$$         and $$\overrightarrow \nu = \overrightarrow c \times \left( {\overrightarrow a + \overrightarrow b } \right).$$     Then :

A $$\overrightarrow \lambda + \overrightarrow \mu = \overrightarrow \nu $$
B $$\overrightarrow \lambda ,\,\overrightarrow \mu ,\,\overrightarrow \nu $$   are coplanar
C $$\overrightarrow \lambda + \overrightarrow \nu = 2\overrightarrow \mu $$
D none of these
Answer :   $$\overrightarrow \lambda ,\,\overrightarrow \mu ,\,\overrightarrow \nu $$   are coplanar

18. A force $$\overrightarrow F = 3\hat i + 4\hat j - 3\hat k$$    is applied at the point $$P,$$ whose position vector is $$\overrightarrow r = 2\hat i - 2\hat j - 3\hat k.$$    What is the magnitude of the moment of the force about the origin ?

A $$23$$  units
B $$19$$  units
C $$18$$  units
D $$21$$  units
Answer :   $$23$$  units

19. If $$\vec a = \frac{1}{{\sqrt {10} }}\left( {3\hat i + \hat k} \right)$$    and $$\vec b = \frac{1}{7}\left( {2\hat i + 3\hat j - 6\hat k} \right),$$     then the value of $$\left( {2\vec a - \vec b} \right)\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a + 2\vec b} \right)} \right]$$      is :

A $$ - 3$$
B $$5$$
C $$3$$
D $$ - 5$$
Answer :   $$ - 5$$

20. The vector $$\vec a = \alpha \hat i + 2\hat j + \beta \hat k$$    lies in the plane of the vectors $$\vec b = \hat i + \hat j$$   and $$\vec c = \hat j + \hat k$$   and bisects the angle between $${\vec b}$$ and $${\vec c}.$$  Then which one of the following gives possible values of $$\alpha $$ and $$\beta \,?$$

A $$\alpha = 2,\,\,\beta = 2$$
B $$\alpha = 1,\,\,\beta = 2$$
C $$\alpha = 2,\,\,\beta = 1$$
D $$\alpha = 1,\,\,\beta = 1$$
Answer :   $$\alpha = 1,\,\,\beta = 1$$