3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
If the vectors $$\overrightarrow {AB} = 3\hat i + 4\hat k$$ and $$\overrightarrow {AC} = 5\hat i - 2\hat j + 4\hat k$$ are the sides of a triangle $$ABC,$$ then the length of the median through $$A$$ is :
A
$$\sqrt {18} $$
B
$$\sqrt {72} $$
C
$$\sqrt {33} $$
D
$$\sqrt {45} $$
Answer :
$$\sqrt {33} $$
$$\because \,M$$ is mid point of $$BC$$
$$\eqalign{
& \therefore \,\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cr
& = 4\hat i + \hat j + 4\hat k \cr} $$
Length of median $$AM$$
$$ = \sqrt {16 + 1 + 16} = \sqrt {33} $$
12.
The position vectors of two vertices and the centroid of a triangle are $$\overrightarrow i + \overrightarrow j ,\,2\overrightarrow i - \overrightarrow j + \overrightarrow k $$ and $$\overrightarrow k $$ respectively. The position vector of the third vertex of the triangle is :
A
$$ - 3\overrightarrow i + 2\overrightarrow k $$
B
$$3\overrightarrow i - 2\overrightarrow k $$
C
$$\overrightarrow i + \frac{2}{3}\overrightarrow k $$
D
none of these
Answer :
$$ - 3\overrightarrow i + 2\overrightarrow k $$
The positive vector of the centroid $$ = \frac{{\overrightarrow a + \overrightarrow b + \overrightarrow c }}{3},$$ where $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are the position vectors of the vertices.
$$\therefore \,\overrightarrow k = \frac{{\overrightarrow i + \overrightarrow j + 2\overrightarrow i - \overrightarrow j + \overrightarrow k + \overrightarrow a }}{3}\,\,\,\,\,\therefore \overrightarrow a = - 3\overrightarrow i + 2\overrightarrow k $$
13.
$$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are three vectors of which every pair is noncollinear. If the vector $$\overrightarrow a + \overrightarrow b $$ and $$\overrightarrow b + \overrightarrow c $$ are collinear with $$\overrightarrow c $$ and $$\overrightarrow a $$ respectively then $$\overrightarrow a + \overrightarrow b + \overrightarrow c $$ is :
A
a unit vector
B
the null vector
C
equally inclined to $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$
D
none of these
Answer :
the null vector
Here, $$\overrightarrow a + \overrightarrow b = t\overrightarrow c ,\,\,\overrightarrow b + \overrightarrow c = s\overrightarrow a .$$ Subtracting, $$\overrightarrow a - \overrightarrow c = t\overrightarrow c - s\overrightarrow a $$
or $$\left( {1 + s} \right)\overrightarrow a = \left( {1 + t} \right)\overrightarrow c $$
But $$\overrightarrow a ,\,\overrightarrow c $$ are noncollinear.
$$\therefore \,1 + s = 0,\,\,1 + t = 0.$$ Hence, $$\overrightarrow a + \overrightarrow b = - \overrightarrow c $$
14.
What is the interior acute angle of the parallelogram whose sides are represented by the vectors $$\frac{1}{{\sqrt 2 }}\hat i + \frac{1}{{\sqrt 2 }}\hat j + \hat k$$ and $$\frac{1}{{\sqrt 2 }}\hat i - \frac{1}{{\sqrt 2 }}\hat j + \hat k\,?$$
16.
Let $$\overrightarrow r = \left( {\overrightarrow a \times \overrightarrow b } \right)\sin \,x + \left( {\overrightarrow b \times \overrightarrow c } \right)\cos \,y + 2\left( {\overrightarrow c \times \overrightarrow a } \right)$$ where $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are three non-coplanar vectors. If $$\overrightarrow r $$ is perpendicular to $$\overrightarrow a + \,\overrightarrow b + \,\overrightarrow c $$ then minimum value of $${x^2} + {y^2}$$ is :
A
$${\pi ^2}$$
B
$$\frac{{{\pi ^2}}}{4}$$
C
$$\frac{{5{\pi ^2}}}{4}$$
D
none of these
Answer :
$$\frac{{5{\pi ^2}}}{4}$$
$$\eqalign{
& \overrightarrow r = \left( {\overrightarrow a \times \overrightarrow b } \right)\sin \,x + \left( {\overrightarrow b \times \overrightarrow c } \right)\cos \,y + 2\left( {\overrightarrow c \times \overrightarrow a } \right) \cr
& \overrightarrow r .\left( {\overrightarrow a + \,\overrightarrow b + \,\overrightarrow c } \right) = 0 \cr
& \Rightarrow \left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right]\left( {\sin \,x + \cos \,y + 2} \right) = 0 \cr} $$
Since, $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] \ne 0,$$ we have $$\sin \,x + \cos \,y = - 2$$
This is possible only when $$\sin \,x = - 1{\text{ and }}\cos \,y = - 1$$
For $${x^2} + {y^2}$$ to be minimum, $$x = \frac{\pi }{2}{\text{ and }}y = \pi $$
$$\therefore $$ Minimum value of $$\left( {{x^2} + {y^2}} \right) = \frac{{{\pi ^2}}}{2} + {\pi ^2} = \frac{{5{\pi ^2}}}{4}$$
17.
Let $$\overrightarrow \lambda = \overrightarrow a \times \left( {\overrightarrow b + \overrightarrow c } \right),\,\overrightarrow \mu = \overrightarrow b \times \left( {\overrightarrow c + \overrightarrow a } \right)$$ and $$\overrightarrow \nu = \overrightarrow c \times \left( {\overrightarrow a + \overrightarrow b } \right).$$ Then :
A
$$\overrightarrow \lambda + \overrightarrow \mu = \overrightarrow \nu $$
B
$$\overrightarrow \lambda ,\,\overrightarrow \mu ,\,\overrightarrow \nu $$ are coplanar
C
$$\overrightarrow \lambda + \overrightarrow \nu = 2\overrightarrow \mu $$
Adding and simplifying, $$\overrightarrow \lambda + \overrightarrow \mu + \overrightarrow \nu = 0$$
$$\therefore $$ there is a linear relation between $$\overrightarrow \lambda ,\,\overrightarrow \mu ,\,\overrightarrow \nu $$ and, therefore, they are coplanar.
18.
A force $$\overrightarrow F = 3\hat i + 4\hat j - 3\hat k$$ is applied at the point $$P,$$ whose position vector is $$\overrightarrow r = 2\hat i - 2\hat j - 3\hat k.$$ What is the magnitude of the moment of the force about the origin ?
19.
If $$\vec a = \frac{1}{{\sqrt {10} }}\left( {3\hat i + \hat k} \right)$$ and $$\vec b = \frac{1}{7}\left( {2\hat i + 3\hat j - 6\hat k} \right),$$ then the value of $$\left( {2\vec a - \vec b} \right)\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a + 2\vec b} \right)} \right]$$ is :
A
$$ - 3$$
B
$$5$$
C
$$3$$
D
$$ - 5$$
Answer :
$$ - 5$$
$$\eqalign{
& {\text{We have, }}\vec a.\vec b = 0,\,\,\,\vec a.\vec a = 1,\,\,\vec b.\vec b = 1 \cr
& \left( {2\vec a - \vec b} \right).\left[ {\left( {\vec a \times \vec b} \right) \times \left( {\vec a + 2\vec b} \right)} \right] \cr
& = \left( {2\vec a - \vec b} \right).\left[ {\left\{ {\vec a.\left( {\vec a + 2\vec b} \right)} \right\}\vec b - \left\{ {\vec b.\left( {\vec a + 2\vec b} \right)\vec a} \right\}} \right] \cr
& = \left( {2\vec a - \vec b} \right).\left[ {\left( {\vec a.\vec a + 2\vec a.\vec b} \right)\vec b - \left( {\vec a.\vec b + 2\vec b.\vec b} \right)\vec a} \right] \cr
& = \left( {2\vec a - \vec b} \right).\left[ {\left( {\vec b - 2\vec a} \right)} \right] \cr
& = 4\vec a.\vec b - \vec b.\vec b - 4\vec a.\vec a \cr
& = - 5 \cr} $$
20.
The vector $$\vec a = \alpha \hat i + 2\hat j + \beta \hat k$$ lies in the plane of the vectors $$\vec b = \hat i + \hat j$$ and $$\vec c = \hat j + \hat k$$ and bisects the angle between $${\vec b}$$ and $${\vec c}.$$ Then which one of the following gives possible values of $$\alpha $$ and $$\beta \,?$$
A
$$\alpha = 2,\,\,\beta = 2$$
B
$$\alpha = 1,\,\,\beta = 2$$
C
$$\alpha = 2,\,\,\beta = 1$$
D
$$\alpha = 1,\,\,\beta = 1$$
Answer :
$$\alpha = 1,\,\,\beta = 1$$
$$\because \,\,\vec a$$ lies in the plane of $${\vec b}$$ and $${\vec c}$$
$$\eqalign{
& \therefore \,\,\vec a = \vec b + \lambda \vec c \cr
& \Rightarrow \alpha \hat i + 2\hat j + \beta \hat k = \hat i + \hat j + \lambda \left( {\hat j + \hat k} \right) \cr
& \Rightarrow \alpha = 1,\,2 = 1 + \lambda ,\,\,\beta = \lambda \cr
& \Rightarrow \alpha = 1,\,\,\beta = 1 \cr} $$