3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
211.
If $$\overrightarrow {OA} = \overrightarrow a \,;\,\overrightarrow {OB} = \overrightarrow b \,;\,\overrightarrow {OC} = 2\overrightarrow a + 3\overrightarrow b \,;\,\overrightarrow {OD} = \overrightarrow a - 2\overrightarrow b ,$$ the length of $$\overrightarrow {OA} $$ is three times the length of $$\overrightarrow {OB} $$ and $$\overrightarrow {OA} $$ is perpendicular to $$\overrightarrow {DB} $$ then $$\left( {\overrightarrow {BD} \times \overrightarrow {AC} } \right).\left( {\overrightarrow {OD} \times \overrightarrow {OC} } \right){\text{ is :}}$$
A
$$7{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$
B
$$42{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$
C
$$0$$
D
None of these
Answer :
$$42{\left| {\overrightarrow a \times \overrightarrow b } \right|^2}$$
$$\eqalign{
& \overrightarrow {BD} = \overrightarrow a - 3\overrightarrow b ,\,\overrightarrow {AC} = \overrightarrow a + 3\overrightarrow b \cr
& \overrightarrow {BD} \times \overrightarrow {AC} = \left( {\overrightarrow a - 3\overrightarrow b } \right) \times \left( {\overrightarrow a + 3\overrightarrow b } \right) = 6\overrightarrow a \times \overrightarrow b \cr
& \overrightarrow {OD} \times \overrightarrow {OC} = \left( {\overrightarrow a - 2\overrightarrow b } \right) \times \left( {2\overrightarrow a + 3\overrightarrow b } \right) = 7\overrightarrow a \times \overrightarrow b \cr
& \left( {\overrightarrow {BD} \times \overrightarrow {AC} } \right).\left( {\overrightarrow {OD} \times \overrightarrow {OC} } \right) = 42{\left( {\overrightarrow a \times \overrightarrow b } \right)^2} \cr} $$
212.
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two noncollinear unit vectors. If $$\overrightarrow u = \overrightarrow a - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b $$ and $$\overrightarrow v = \overrightarrow a \times \overrightarrow b $$ then $$\left| {\overrightarrow v } \right|$$ is :
A
$$\left| {\overrightarrow u } \right|$$
B
$$\left| {\overrightarrow u } \right| + \left| {\overrightarrow u .\overrightarrow a } \right|$$
C
$$\left| {\overrightarrow u } \right| + \left| {\overrightarrow u .\overrightarrow b } \right|$$
D
$$\left| {\overrightarrow u } \right| + \overrightarrow u .\left( {\overrightarrow a .\overrightarrow b } \right)$$
Answer :
$$\left| {\overrightarrow u } \right|$$
$$\eqalign{
& \left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow b = \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b - \left( {\overrightarrow b .\overrightarrow b } \right)\overrightarrow a \cr
& \therefore \,\left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow b = \left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow b + \overrightarrow a \cr
& \therefore \,\overrightarrow u = \overrightarrow a - \left\{ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow b + \overrightarrow a } \right\} = \overrightarrow b \times \left( {\overrightarrow a \times \overrightarrow b } \right) \cr
& \therefore \,\overrightarrow u = \overrightarrow b \times \overrightarrow v \cr
& \Rightarrow \left| {\overrightarrow u } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow v } \right|{\text{ because }}\overrightarrow b .\overrightarrow v = 0,{\text{ i}}{\text{.e}}{\text{., }}\overrightarrow b \bot \overrightarrow v \cr
& \Rightarrow \left| {\overrightarrow u } \right| = \left| {\overrightarrow v } \right|{\text{ because }}\left| {\overrightarrow b } \right| = 1. \cr} $$
213.
A vector of magnitude 4 which is equally inclined to the vectors $$\overrightarrow i + \overrightarrow j ,\,\overrightarrow j + \overrightarrow k $$ and $$\overrightarrow k + \overrightarrow i $$ is :
A
$$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i - \overrightarrow j - \overrightarrow k } \right)$$
B
$$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j - \overrightarrow k } \right)$$
C
$$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)$$
D
none of these
Answer :
$$\frac{4}{{\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right)$$
$$\eqalign{
& {\text{Let }}\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k .{\text{ Then }}\left| {\overrightarrow a } \right| = 4 = \sqrt {{x^2} + {y^2} + {z^2}} \cr
& {\text{Now, }}\frac{{\overrightarrow a .\left( {\overrightarrow i + \overrightarrow j } \right)}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow i + \overrightarrow j } \right|}} = \frac{{\overrightarrow a .\left( {\overrightarrow j + \overrightarrow k } \right)}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow j + \overrightarrow k } \right|}} = \frac{{\overrightarrow a .\left( {\overrightarrow k + \overrightarrow i } \right)}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow k + \overrightarrow i } \right|}}\left( {{\text{from the question}}} \right) \cr
& {\text{or }}x + y = y + z = z + x = t\,\,\left( {{\text{say}}} \right) \cr
& {\text{Adding, }}2\left( {x + y + z} \right) = 3t\,\,\,\,{\text{or}}\,\,x + y + z = \frac{{3t}}{2} \cr
& \therefore \,x = y = z = \frac{t}{2} \cr
& \therefore \,4 = \sqrt {{x^2} + {y^2} + {z^2}} \, \Rightarrow 16 = 3.{\left( {\frac{t}{2}} \right)^2} \cr
& \therefore t = \pm \frac{8}{{\sqrt 3 }}.{\text{ So, }}\overrightarrow a = \pm \frac{8}{{2\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j + \overrightarrow k } \right) \cr} $$
214.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are any three vectors in space then $$\left( {\overrightarrow c + \overrightarrow b } \right) \times \left( {\overrightarrow c + \overrightarrow a } \right).\left( {\overrightarrow c + \overrightarrow b + \overrightarrow a } \right)$$ is equal to :
A
$$3\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
B
$$0$$
C
$$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
D
none of these
Answer :
$$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right]$$
$$\eqalign{
& \,\,\,\,\,\,\left( {\overrightarrow c + \overrightarrow b } \right) \times \left( {\overrightarrow c + \overrightarrow a } \right).\left( {\overrightarrow c + \overrightarrow b + \overrightarrow a } \right) \cr
& = \left( {\overrightarrow c \times \overrightarrow a + \overrightarrow b \times \overrightarrow c + \overrightarrow b \times \overrightarrow a } \right).\left( {\overrightarrow c + \overrightarrow b + \overrightarrow a } \right) \cr
& = \left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right] + \left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right] + \left[ {\overrightarrow b \,\,\overrightarrow a \,\,\overrightarrow c } \right] \cr
& = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] - \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] \cr
& = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] \cr} $$
215.
If the vectors $$\vec a,\,\vec b$$ and $${\vec c}$$ form the sides $$BC,\,CA$$ and $$AB$$ respectively of a triangle $$ABC,$$ then -
A
$$\vec a.\vec b + \vec b.\vec c + \vec c.\vec a = 0$$
B
$$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a$$
C
$$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a$$
D
$$\vec a \times \vec b + \vec b \times \vec c + \vec c \times \vec a = 0$$
Answer :
$$\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a$$
$$\eqalign{
& {\text{Given }}\vec a + \vec b + \vec c = 0\,\,\,\,\,\,\,\,\,\,\left( {{\text{by triangle law}}} \right) \cr
& \therefore \vec a \times \left( {\vec a + \vec b + \vec c} \right) = \vec a \times \vec 0 = \vec 0 \cr
& \Rightarrow \vec a \times \vec a + \vec a \times \vec b + \vec a \times \vec c = \vec 0 \cr
& \Rightarrow \vec a \times \vec b = \vec c \times \vec a\,\,\,\,\,\,\,\,\,\,\,\left[ {\because \,\vec a \times \vec a = 0} \right] \cr
& {\text{Similarly, }}\vec a \times \vec b = \vec b \times \vec c\,; \cr
& {\text{Therefore }}\vec a \times \vec b = \vec b \times \vec c = \vec c \times \vec a \cr} $$
216.
The vertices of a triangle $$ABC$$ are $$A\left( { - 1,\,0,\,2} \right),\,B\left( {1,\,2,\,0} \right)$$ and $$C\left( {2,\,3,\,4} \right).$$ The
moment of a force of magnitude $$10$$ acting at $$A$$ along $$AB$$ about $$C$$ is :
A
$$\frac{{50\sqrt 6 }}{3}$$
B
$$20\sqrt 6 $$
C
$$\frac{{50}}{{\sqrt 3 }}$$
D
none of these
Answer :
$$\frac{{50\sqrt 6 }}{3}$$
$$\eqalign{
& \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow i + 2\overrightarrow j - \left( { - \overrightarrow i + 2\overrightarrow k } \right) = 2\overrightarrow i + 2\overrightarrow j - 2\overrightarrow k \cr
& \therefore {\text{ vector moment about }}C = \overrightarrow {CA} \times \frac{{10\left( {2\overrightarrow i + 2\overrightarrow j - 2\overrightarrow k } \right)}}{{\sqrt {12} }} \cr
& = - \left( {3\overrightarrow i + 3\overrightarrow j + 2\overrightarrow k } \right) \times \frac{{10}}{{\sqrt 3 }}\left( {\overrightarrow i + \overrightarrow j - \overrightarrow k } \right) \cr
& = \frac{{10}}{{\sqrt 3 }}\left( {5\overrightarrow i - 5\overrightarrow j } \right) \cr
& \therefore {\text{moment}} = \frac{{10}}{{\sqrt 3 }}.\sqrt {{5^2} + {5^2}} = \frac{{50\sqrt 2 }}{{\sqrt 3 }} = \frac{{50\sqrt 6 }}{3}. \cr} $$
217.
Let $${x^2} + 3{y^2} = 3$$ be the equation of an ellipse in the $$x$$-$$y$$ plane. $$A$$ and $$B$$ are two points whose position vectors are $$ - \sqrt 3 \hat i$$ and $$ - \sqrt 3 \hat i + 2\hat k.$$ Then the position vector of a point $$P$$ on the ellipse such that $$\angle APB = \frac{\pi }{4}$$ is :
A
$$ \pm \hat j$$
B
$$ \pm \left( {\hat i + \hat j} \right)$$
C
$$ \pm \hat i$$
D
none of these
Answer :
$$ \pm \hat j$$
Point $$P$$ lies on $${x^2} + 3{y^2} = 3......\left( {\text{i}} \right)$$
Now from the diagram, according to the given conditions,
$$\eqalign{
& AP = AB{\text{ or }}{\left( {x + \sqrt 3 } \right)^2} + {\left( {y - 0} \right)^2} = 4 \cr
& {\text{or }}{\left( {x + \sqrt 3 } \right)^2} + {y^2} = 4......\left( {{\text{ii}}} \right) \cr} $$
Solving $$\left( {\text{i}} \right)$$ and $$\left( {\text{ii}} \right),$$ we get $$x = 0$$ and $$y = \pm 1$$
Hence, point $$P$$ has position vector $$ \pm \hat j.$$
218.
The vectors $$\overrightarrow {AB} = 3\hat i + 4\hat k\,\& \,\overrightarrow {AC} = 5\hat i - 2\hat j + 4\hat k$$ are the sides of a triangle $$ABC.$$ The length of the median through $$A$$ is :
219.
If $$\vec a,\,\vec b,\,\vec c$$ are non coplanar unit vectors such that $$\vec a \times \left( {\vec b \times \vec c} \right) = \frac{{\left( {\vec b + \vec c} \right)}}{{\sqrt 2 }},$$ then the angle between $${\vec a}$$ and $${\vec b}$$ is :
220.
Let $$\overrightarrow r $$ be a vector perpendicular to $$\overrightarrow a + \overrightarrow b + \overrightarrow c ,$$ where $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 2.$$ If $$\overrightarrow r = l\left( {\overrightarrow b \times \overrightarrow c } \right) + m\left( {\overrightarrow c \times \overrightarrow a } \right) + n\left( {\overrightarrow a \times \overrightarrow b } \right)$$ then $$l + m + n$$ is :
A
2
B
1
C
0
D
none of these
Answer :
0
$$\eqalign{
& {\text{Here }}\overrightarrow r .\left( {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right) = 0 \cr
& \therefore \,\overrightarrow r .\overrightarrow a + \overrightarrow r .\overrightarrow b + \overrightarrow r .\overrightarrow c = 0 \cr
& {\text{Now }}\overrightarrow r .\overrightarrow a = l\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right]\,\,\overrightarrow r .\overrightarrow b = m\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right]\,\,\overrightarrow r .\overrightarrow c = n\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] \cr
& \therefore l\left[ {\overrightarrow b \,\,\overrightarrow c \,\,\overrightarrow a } \right] + m\left[ {\overrightarrow c \,\,\overrightarrow a \,\,\overrightarrow b } \right] + n\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 0 \cr
& \Rightarrow l + m + n = 0\,\,\,\,\,\,\,\left( {\because \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow c } \right] = 2 \ne 0} \right) \cr} $$