3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
261.
If $$\overrightarrow p $$ and $$\overrightarrow q $$ are two unit vectors inclined at an angle $$\alpha $$ to each other then $$\left| {\overrightarrow p + \overrightarrow q } \right| < 1$$ if :
A
$$\frac{{2\pi }}{3} < \alpha < \frac{{4\pi }}{3}$$
262.
In a right angle $$\Delta ABC,\,\angle A = {90^ \circ }$$ and sides $$a,\,b,\,c$$ are respectively, $$5\,cm,$$ $$4\,cm$$ and $$3\,cm.$$ If a force $$\overrightarrow F $$ has moments $$0,\,9$$ and $$16$$ in $$N\,cm$$ units respectively about vertices $$A,\,B$$ and $$C,$$ then
magnitude of $$\overrightarrow F $$ is :
A
$$9$$
B
$$4$$
C
$$5$$
D
$$3$$
Answer :
$$5$$
Since, the moment about $$A$$ is zero, hence $$\overrightarrow F $$ passes through $$A.$$ Taking $$A$$ as origin.
Let the line of action of force $$\overrightarrow F $$ be $$y = mx.$$ (see figure)
Moment about $$B = \frac{{3m}}{{\sqrt {1 + {m^2}} }}\left| {\overrightarrow F } \right| = 9......\left( 1 \right)$$
Moment about $$C = \frac{4}{{\sqrt {1 + {m^2}} }}\left| {\overrightarrow F } \right| = 16......\left( 2 \right)$$
Dividing $$\left( 1 \right)$$ by $$\left( 2 \right),$$ we get :
$$m = \frac{3}{4} \Rightarrow \left| {\overrightarrow F } \right| = 5N.$$
263.
Let $$a,\,b$$ and $$c$$ be distinct non-negative numbers. If the vectors $$a\hat i + a\hat j + c\hat k,\,\hat i + \hat k$$ and $$c\hat i + c\hat j + b\hat k$$ lie in a plane, then $$c$$ is :
A
the Geometric Mean of $$a$$ and $$b$$
B
the Arithmetic Mean of $$a$$ and $$b$$
C
equal to zero
D
the Harmonic Mean of $$a$$ and $$b$$
Answer :
the Geometric Mean of $$a$$ and $$b$$
Vector $$a\vec i + a\vec j + c\vec k,\,\vec i + \vec k$$ and $$c\vec i + c\vec j + b\vec k$$ are coplanar
\[\left| \begin{array}{l}
a\,\,\,\,\,\,\,a\,\,\,\,\,c\\
1\,\,\,\,\,\,0\,\,\,\,\,\,1\\
c\,\,\,\,\,\,\,c\,\,\,\,\,\,b
\end{array} \right| = 0\,\,\, \Rightarrow {c^2} = ab\,\,\, \Rightarrow c = \sqrt {ab} \]
$$\therefore \,\,c$$ is G.M. of $$a$$ and $$b.$$
264.
If $$\overrightarrow a ,\,\overrightarrow b $$ are nonzero and noncollinear vectors then $$\left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow i } \right]\overrightarrow i + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow j } \right]\overrightarrow j + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow k } \right]\overrightarrow k $$ is equal to :
A
$$\overrightarrow a + \overrightarrow b $$
B
$$\overrightarrow a \times \overrightarrow b $$
C
$$\overrightarrow a - \overrightarrow b $$
D
$$\overrightarrow b \times \overrightarrow a $$
Answer :
$$\overrightarrow a \times \overrightarrow b $$
$$\eqalign{
& {\text{Let }}\overrightarrow a \times \overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \cr
& \therefore \overrightarrow a \times \overrightarrow b .\overrightarrow i = x\,\,\overrightarrow a \times \overrightarrow b .\overrightarrow j = y\,\,\overrightarrow a \times \overrightarrow b .\overrightarrow k = z \cr
& \therefore \overrightarrow a \times \overrightarrow b = \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow i } \right]\overrightarrow i + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow j } \right]\overrightarrow j + \left[ {\overrightarrow a \,\,\overrightarrow b \,\,\overrightarrow k } \right]\overrightarrow k \cr} $$
265.
If $$A = \left( {p,\,q,\,r} \right)$$ and $$B = \left( {p',\,q',\,r'} \right)$$ are two points on the line $$\lambda x = \mu y = \nu z$$ such that $$OA = a,\,OB = b$$ then $$pp' + qq' + rr'$$ is equal to :
266.
A particle acted on by constant forces $$4\hat i + \hat j - 3\hat k$$ and $$3\hat i + \hat j - \hat k$$ is displaced from the point $$\hat i + 2\hat j - 3\hat k$$ to the point $$5\hat i + 4\hat j + \hat k.$$ The total work done by the forces is :
A
$$50\,units$$
B
$$20\, units$$
C
$$30\, units$$
D
$$40\, units$$
Answer :
$$40\, units$$
$$\eqalign{
& \overrightarrow F + \overrightarrow {{F_1}} + \overrightarrow {{F_2}} = 7i + 2j - 4k \cr
& \overrightarrow d = P.V.\,{\text{ of }}\overrightarrow B - P.V.{\text{ of }}\overrightarrow A = 4i + 2j - 2k \cr
& W = \overrightarrow F .\overrightarrow d = 28 + 4 + 8 = 40{\text{ units}} \cr} $$
267.
For any vector $${\overrightarrow \alpha },$$ what is $$\left( {\overrightarrow \alpha .\hat i} \right)\hat i + \left( {\overrightarrow \alpha .\hat j} \right)\hat j + \left( {\overrightarrow \alpha .\hat k} \right)\hat k$$ equal to ?
A
$${\overrightarrow \alpha }$$
B
$$3\overrightarrow \alpha $$
C
$$ - \overrightarrow \alpha $$
D
$$\overrightarrow 0 $$
Answer :
$${\overrightarrow \alpha }$$
$$\eqalign{
& {\text{Let }}\overrightarrow \alpha = \overrightarrow a \hat i + \overrightarrow b \hat j + \overrightarrow c \hat k \cr
& {\text{Now, }}\overrightarrow \alpha .\hat i = \left( {\overrightarrow a \hat i + \overrightarrow b \hat j + \overrightarrow c \hat k} \right).\hat i = \overrightarrow a \cr
& \overrightarrow \alpha .\hat j = \left( {\overrightarrow a \hat i + \overrightarrow b \hat j + \overrightarrow c \hat k} \right).\hat j = \overrightarrow b \cr
& \overrightarrow \alpha .\hat k = \left( {\overrightarrow a \hat i + \overrightarrow b \hat j + \overrightarrow c \hat k} \right).\hat k = \overrightarrow c \cr
& {\text{Now, }}\overrightarrow a \hat i + \overrightarrow b \hat j + \overrightarrow c \hat k = \overrightarrow \alpha \cr
& {\text{Thus, required expression}} = \overrightarrow \alpha \cr} $$
268.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c ,\,\overrightarrow d $$ are the position vectors of points $$A,\,B,\,C$$ and $$D$$ respectively such that $$\left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) = \left( {\overrightarrow b - \overrightarrow d } \right).\left( {\overrightarrow c - \overrightarrow a } \right) = 0$$ then $$D$$ is the :
A
centroid of $$\Delta ABC$$
B
circumcenter of $$\Delta ABC$$
C
orthocenter of $$\Delta ABC$$
D
None of these
Answer :
orthocenter of $$\Delta ABC$$
$$\therefore \left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) = 0$$
$$ \Rightarrow \overrightarrow {DA} $$ and $$\overrightarrow {CB} $$ are perpendicular
$$\left( {\overrightarrow b - \overrightarrow d } \right).\left( {\overrightarrow c - \overrightarrow a } \right) = 0$$
$$ \Rightarrow \overrightarrow {DB} $$ and $$\overrightarrow {AC} $$ are perpendicular
$$\therefore \,D$$ is orthocenter of $$\Delta ABC.$$
269.
If $$C$$ is the mid point of $$AB$$ and $$P$$ is any point outside $$AB,$$ then :
A
$$\overrightarrow {PA} + \overrightarrow {PB} = 2\overrightarrow {PC} $$
B
$$\overrightarrow {PA} + \overrightarrow {PB} = \overrightarrow {PC} $$