Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
121.
Under what condition do $$\left\langle {\frac{1}{{\sqrt 2 }},\,\frac{1}{2},\,k} \right\rangle $$ represent direction cosines of a line ?
A
$$k = \frac{1}{2}$$
B
$$k = - \frac{1}{2}$$
C
$$k = \pm \frac{1}{2}$$
D
$$k$$ can take any value
Answer :
$$k = \pm \frac{1}{2}$$
For $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{2},\,k} \right)$$ to represent direction cosines, we should have
$$\eqalign{
& {\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + {\left( {\frac{1}{2}} \right)^2} + {k^2} = 1\,\,{\text{or, }}\frac{1}{2} + \frac{1}{4} + {k^2} + 1 \cr
& \Rightarrow k = \pm \frac{1}{2} \cr} $$
122.
Let the line $$\frac{{x - 2}}{3} = \frac{{y - 1}}{{ - 5}} = \frac{{z + 2}}{2}$$ lie in the plane $$x + 3y - \alpha z + \beta = 0.$$ Then $$\left( {\alpha ,\,\beta } \right)$$ equals :
A
$$\left( { - 6,\,7} \right)$$
B
$$\left( {5,\, - 15} \right)$$
C
$$\left( { - 5,\,5} \right)$$
D
$$\left( {6,\, - 17} \right)$$
Answer :
$$\left( { - 6,\,7} \right)$$
$$\because $$ The line $$\frac{{x - 2}}{3} = \frac{{y - 1}}{{ - 5}} = \frac{{z + 2}}{2}$$ lies in the plane $$x + 3y - \alpha z + \beta = 0$$
$$\therefore Pt\left( {2,\,1,\, - 2} \right)$$ lies on the plane
i.e., $$2 + 3 + 2\alpha + \beta = 0$$
or $$2\alpha + \beta + 5 = 0.....({\text{i}})$$
Also normal to plane will be perpendicular to line,
$$\eqalign{
& \therefore 3 \times 1 - 5 \times 3 + 2 \times \left( { - \alpha } \right) = 0 \cr
& \Rightarrow \alpha = - 6 \cr} $$
From equation (i) then, $$\beta = 7$$
$$\therefore \,\,\left( {\alpha ,\,\beta } \right) = \left( { - 6,\,7} \right)$$
123.
If the plane $$2ax-3ay+4az+6=0$$ passes through the midpoint of the line joining the centres of the spheres $${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$ and $${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$ then $$a$$ equals :
A
$$-1$$
B
$$1$$
C
$$-2$$
D
$$2$$
Answer :
$$-2$$
Centers of given spheres are $$\left( { - 3,\,4,\,1} \right)$$ and $$\left( {5,\, - 2,\,1} \right).$$
Mid point of centres is (1, 1, 1).
Satisfying this in the equation of plane, we get
$$\eqalign{
& 2a - 3a + 4a + 6 = 0 \cr
& \Rightarrow a = - 2 \cr} $$
124.
If the direction cosines of a line are $$\left( {\frac{1}{c},\,\frac{1}{c},\,\frac{1}{c}} \right)$$ then :
A
$$0 < c < 1$$
B
$$c > 2$$
C
$$c > 0$$
D
$$c = \pm \sqrt 3 $$
Answer :
$$c = \pm \sqrt 3 $$
$$\eqalign{
& {\text{Since d}}{\text{.c}}{\text{. of line are }}\left\{ {\frac{1}{c},\,\frac{1}{c},\,\frac{1}{c}} \right\} \cr
& \therefore \,\frac{1}{{{c^2}}} + \frac{1}{{{c^2}}} + \frac{1}{{{c^2}}} = 1 \cr
& \Rightarrow {c^2} = 3 \cr
& \Rightarrow c = \pm \sqrt 3 \cr} $$
125.
The equation of the plane which makes with co-ordinate axes, a triangle with its centroid $$\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ is :
Let us take a triangle $$ABC$$ and their vertices $$A\left( {a,\,0,\,0} \right),\,B\left( {0,\,b,\,0} \right)$$ and $$C\left( {0,\,0,\,c} \right)$$
Therefore the equation of plane is
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1......\left( {\text{i}} \right)$$
Now, given centroid of $$\Delta ABC$$ is $$\left( {\alpha ,\,\beta ,\,\gamma } \right)$$
As we know, centroid of $$\Delta ABC$$ with vertices $$\left( {{x_1},\,{y_1},\,{z_1}} \right),\,\left( {{x_2},\,{y_2},\,{z_2}} \right)$$ and $$\left( {{x_3},\,{y_3},\,{z_3}} \right)$$ is given by
$$\left( {\frac{{{x_1} + {x_2} + {x_3}}}{3},\,\frac{{{y_1} + {y_2} + {y_3}}}{3},\,\frac{{{z_1} + {z_2} + {z_3}}}{3}} \right)$$
$$\therefore $$ By using this formula, we have
$$\eqalign{
& \frac{{a + 0 + 0}}{3} = \alpha \, \Rightarrow a = 3\alpha \,; \cr
& \frac{{0 + b + 0}}{3} = \beta \, \Rightarrow b = 3\beta \,; \cr
& {\text{and }}\frac{{0 + 0 + c}}{3} = \gamma \, \Rightarrow c = 3\gamma \cr} $$
Now, put the values of $$a,\,b,\,c$$ in equation $$\left( {\text{i}} \right)$$,
which gives
$$\eqalign{
& \frac{x}{{3\alpha }} + \frac{y}{{3\beta }} + \frac{z}{{3\gamma }} = 1 \cr
& \therefore \,\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 3 \cr} $$
126.
The plane $$2x - 3y + 6z - 11 = 0$$ makes an angle $${\sin ^{ - 1}}\left( a \right)$$ with the $$x$$-axis. Then the value of $$a$$ is –
A
$$\frac{{\sqrt 3 }}{2}$$
B
$$\frac{{\sqrt 2 }}{3}$$
C
$$\frac{3}{7}$$
D
$$\frac{2}{7}$$
Answer :
$$\frac{2}{7}$$
$$\because $$ DR's of the normal of the plane $$ = 2, - 3, 6$$
and DR's of $$x$$-axis is $$1,\,0,\,0$$
and If $$\theta $$ is the angle between the plane
and $$x$$-axis, then
$$\eqalign{
& \sin \,\theta = \frac{{2\left( 1 \right) + \left( { - 3} \right)\left( 0 \right) + \left( 6 \right)\left( 0 \right)}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {6^2}} \,\sqrt 1 }} \cr
& \Rightarrow \sin \,\theta = \frac{2}{7} \cr
& \Rightarrow \theta = {\sin ^{ - 1}}\left( {\frac{2}{7}} \right) \cr
& \therefore \,a = \frac{2}{7} \cr} $$
127.
What is the angle between two planes $$2x - y + z = 4$$ and $$x + y + 2z = 6\,?$$
A
$$\frac{\pi }{2}$$
B
$$\frac{\pi }{3}$$
C
$$\frac{\pi }{4}$$
D
$$\frac{\pi }{6}$$
Answer :
$$\frac{\pi }{3}$$
Given equations of two planes are $$2x - y + z = 4$$ and $$x + y + 2z = 6$$
So, angle between them is
$$\eqalign{
& \cos \,\theta = \frac{{2\left( 1 \right) + \left( { - 1} \right)\left( 1 \right) + \left( 1 \right)\left( 2 \right)}}{{\sqrt {4 + 1 + 1} \,\sqrt {4 + 1 + 1} }} \cr
& \Rightarrow \cos \,\theta = \frac{{2 - 1 + 2}}{{\sqrt 6 \,\sqrt 6 }} \cr
& \Rightarrow \cos \,\theta = \frac{3}{6} \cr
& \Rightarrow \cos \,\theta = \frac{1}{2} \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr} $$
128.
What are coordinates of the point equidistant from the points $$\left( {a,\,0,\,0} \right),\,\left( {0,\,a,\,0} \right),\,\left( {0,\,0,\,a} \right)$$ and $$\left( {0,\,0,\,0} \right)\,?$$
A
$$\left( {\frac{a}{3},\,\frac{a}{3},\,\frac{a}{3}} \right)$$
B
$$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$
129.
The $$xy$$ -plane divides the line joining the points $$\left( { - 1,\,3,\,4} \right)\left( {2,\, - 5,\,6} \right)$$
A
internally in the ratio $$2 : 3$$
B
externally in the ratio $$2 : 3$$
C
internally in the ratio $$3 : 2$$
D
externally in the ratio $$3 : 2$$
Answer :
externally in the ratio $$3 : 2$$
Suppose $$xy$$ -plane divides the line joining the given points in the ratio $$\lambda :1.$$
The coordinate of the point of division are
$$\left( {\frac{{2\lambda - 1}}{{\lambda + 1}},\,\frac{{ - 5\lambda + 3}}{{\lambda + 1}},\,\frac{{6\lambda + 4}}{{\lambda + 1}}} \right)$$
This point lies on $$xy$$ -plane
$$\frac{{6\lambda + 4}}{{\lambda + 1}} = 0 \Rightarrow \lambda = - \frac{3}{2}$$
Hence, $$xy$$ -plane divides externally in the ratio $$3 : 2.$$
130.
If the sum of the squares of the distance of the point $$\left( {x,\,y,\,z} \right)$$ from the points $$\left( {a,\,0,\,0} \right)$$ and $$\left( { - a,\,0,\,0} \right)$$ is $$2{c^2},$$ then which one of the following is correct ?