133.
Under what condition does the equation $${x^2} + {y^2} + {z^2} + 2ux + 2vy + 2wz = 0$$ represent a real sphere ?
A
$${u^2} + {v^2} + {w^2} = {d^2}$$
B
$${u^2} + {v^2} + {w^2} > d$$
C
$${u^2} + {v^2} + {w^2} < d$$
D
$${u^2} + {v^2} + {w^2} < {d^2}$$
Answer :
$${u^2} + {v^2} + {w^2} > d$$
Equation $${x^2} + {y^2} + {z^2} + 2ux + 2vy + 2wz = 0$$ represents a real sphere if $${u^2} + {v^2} + {w^2} > d$$
134.
If $$O,\,P$$ are the points $$\left( {0,\,0,\,0} \right),\,\left( {2,\,3,\, - 1} \right)$$ respectively, then what is the equation to the plane through $$P$$ at right angles to $$OP\,?$$
A
$$2x + 3y + z = 16$$
B
$$2x + 3y - z = 14$$
C
$$2x + 3y + z = 14$$
D
$$2x + 3y - z = 0$$
Answer :
$$2x + 3y - z = 14$$
Since, coordinates of points $$O$$ and $$P$$ are $$\left( {0,\,0,\,0} \right)$$ and $$\left( {2,\,3,\, - 1} \right)$$ respectively.
Direction ratios of $$OP$$ are $$\left\langle {2,\,3,\, - 1} \right\rangle $$
The plane is perpendicular to $$OP.$$
So, its equation is $$2x + 3y - z + d = 0......\left( {\text{i}} \right)$$
Since, this plane passes through $$\left( {2,\,3,\, - 1} \right);$$
$$\eqalign{
& 2 \times 2 + 3 \times 3 - 1 \times - 1 + d = 0 \cr
& \Rightarrow 4 + 9 + 1 + d = 0 \cr
& \Rightarrow d = - 14 \cr} $$
On putting the value of $$d$$ in equation $$\left( {\text{i}} \right)$$
$$\eqalign{
& 2x + 3y - z - 14 = 0 \cr
& \Rightarrow 2x + 3y - z = 14 \cr} $$
which is required equation of plane.
135.
Ratio in which the $$zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$ and $$\left( {4,\,2,\,1} \right).$$
A
$$1 : 1$$ internally
B
$$1 : 1$$ externally
C
$$2 : 1$$ internally
D
$$2 : 1$$ externally
Answer :
$$1 : 1$$ externally
Suppose $$zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$ and $$\left( {4,\,2,\,1} \right)$$ in the ratio $$\lambda :1.$$
Then, the co-ordinates of the point of division are
$$\left( {\frac{{4\lambda + 1}}{{\lambda + 1}},\,\frac{{2\lambda + 2}}{{\lambda + 1}},\,\frac{{\lambda + 3}}{{\lambda + 1}}} \right)$$
This point lies on $$zx$$ -plane.
$$\therefore \,y$$ -coordinate $$ = 0 \Rightarrow \frac{{2\lambda + 2}}{{\lambda + 1}} = 0 \Rightarrow \lambda = - 1$$
Hence, $$zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$ and $$\left( {4,\,2,\,1} \right)$$ externally in the ratio $$1 : 1.$$ Alternate solution :
We know that the $$zx$$ -plane divides the segment joining $$P\left( {{x_1},\,{y_1},\,{z_1}} \right)$$ and $$Q\left( {{x_2},\,{y_2},\,{z_2}} \right)$$ in the ratio $$ - {y_1}:{y_2}.$$
$$\therefore \,zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$ and $$\left( {4,\,2,\,1} \right)$$ in the ratio $$ - 2:2{\text{ i}}{\text{.e}}{\text{., }}1:1$$ externally.
136.
A mirror and a source of light are situated at the origin $$O$$ and at a point on $$OX$$ respectively. A ray of light from the source strikes the mirror and is
reflected. If the direction ratios of the normal to the plane are $$1,\, – 1,\, 1,$$ then direction cosines of the reflected rays are :
A
$$\frac{1}{3},\,\frac{2}{3},\,\frac{2}{3}$$
B
$$ - \frac{1}{3},\,\frac{2}{3},\,\frac{2}{3}$$
C
$$ - \frac{1}{3},\,\frac{2}{3},\, - \frac{2}{3}$$
D
$$ - \frac{1}{3},\, - \frac{2}{3},\,\frac{2}{3}$$
Let the ray of light comes along $$x$$-axis and strikes the mirror at the origin.
Direction cosines of normal are
$$\frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}{\text{ so, }}\cos \frac{\theta }{2} = \frac{1}{{\sqrt 3 }}$$
Let the reflected ray has direction cosines $$l,\,m,\,n$$ then
$$\eqalign{
& \frac{{l + 1}}{{2\,\cos \frac{\theta }{2}}} = \frac{1}{{\sqrt 3 }} \Rightarrow l = \frac{2}{3} - 1 = - \frac{1}{3} \cr
& \frac{{m + 0}}{{2\,\cos \frac{\theta }{2}}} = - \frac{1}{{\sqrt 3 }} \Rightarrow m = - \frac{2}{3} \cr
& \frac{{n + 0}}{{2\,\cos \frac{\theta }{2}}} = \frac{1}{{\sqrt 3 }} \Rightarrow n = \frac{2}{3} \cr} $$
137.
In $$\Delta ABC$$ the mid-point of the sides $$AB,\,BC$$ and $$CA$$ are respectively $$\left( {l,\,0,\,0} \right),\,\left( {0,\,m,\,0} \right)$$ and $$\left( {0,\,0,\,n} \right).$$
Then, $$\frac{{A{B^2} + B{C^2} + C{A^2}}}{{{l^2} + {m^2} + {n^2}}}$$ is equal to :
139.
The locus of a point, such that the sum of the squares of its distances from the planes $$x + y + z = 0,\,x - z = 0$$ and $$x - 2y + z = 0$$ is $$9$$, is :
A
$${x^2} + {y^2} + {z^2} = 3$$
B
$${x^2} + {y^2} + {z^2} = 6$$
C
$${x^2} + {y^2} + {z^2} = 9$$
D
$${x^2} + {y^2} + {z^2} = 12$$
Answer :
$${x^2} + {y^2} + {z^2} = 9$$
Let the variable point be $$\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ then according to question
$$\eqalign{
& {\left( {\frac{{\left| {\alpha + \beta + \gamma } \right|}}{{\sqrt 3 }}} \right)^2} + {\left( {\frac{{\left| {\alpha - \gamma } \right|}}{{\sqrt 2 }}} \right)^2} + {\left( {\frac{{\left| {\alpha - 2\beta + \gamma } \right|}}{{\sqrt 6 }}} \right)^2} = 9 \cr
& \Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = 9 \cr} $$
So, the locus of the point is $${x^2} + {y^2} + {z^2} = 9$$
140.
The line which passes through the origin and intersect the two lines $$\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z - 5}}{3},\,\frac{{x - 4}}{2} = \frac{{y + 3}}{3} = \frac{{z - 14}}{4},{\text{ is :}}$$
A
$$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{5}$$
B
$$\frac{x}{{ - 1}} = \frac{y}{3} = \frac{z}{5}$$
C
$$\frac{x}{1} = \frac{y}{3} = \frac{z}{{ - 5}}$$
D
$$\frac{x}{1} = \frac{y}{4} = \frac{z}{{ - 5}}$$
Let the line be $$\frac{x}{a} = \frac{y}{b} = \frac{z}{c}......\left( {\text{i}} \right)$$
If line $$\left( {\text{i}} \right)$$ intersects with the line $$\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z - 5}}{3},$$ then
\[\left| \begin{array}{l}
a\,\,\,\,\,\,\,\,b\,\,\,\,\,c\\
2\,\,\,\,\,\,\,\,4\,\,\,\,\,\,3\\
4\,\,\, - 3\,\,\,\,\,14\,
\end{array} \right| = 0 \Rightarrow 9a - 7b - 10c = 0......\left( {{\rm{ii}}} \right)\]
From $$\left( {\text{i}} \right)$$ and $$\left( {\text{i}} \right),$$ we have $$\frac{a}{1} = \frac{b}{{ - 3}} = \frac{c}{5}$$
$$\therefore $$ The line is $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{5}$$