Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
141.
If $$Q$$ is the image of the point $$P\left( {2,\,3,\,4} \right)$$ under the reflection in the plane $$x - 2y + 5z = 6,$$ then the equation of the line $$PQ$$ is :
Let $$Q$$ be the image of the point $$P\left( {2,\,3,\,4} \right)$$ in the plane $$x - 2y + 5z = 6,$$ then $$PQ$$ is normal to the
plane.
$$\therefore $$ direction ratios of $$PQ$$ are $$\left\langle {1,\, - 2,\,5} \right\rangle $$
Since $$PQ$$ passes through $$P\left( {2,\,3,\,4} \right)$$ and has direction ratios $${1,\, - 2,\,5}$$
$$\therefore $$ Equation of $$PQ$$ is $$\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$
142.
$$A\left( {3,\,2,\,0} \right),\,B\left( {5,\,3,\,2} \right)$$ and $$C\left( { - 9,\,6,\, - 3} \right)$$ are the vertices of a triangle $$ABC.$$ If the bisector of $$\angle ABC$$ meets $$BC$$ at $$D$$, then coordinates of $$D$$ are :
A
$$\left( {\frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
B
$$\left( { - \frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
C
$$\left( {\frac{{19}}{8},\, - \frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
144.
If $$P\left( {3,\,2,\, - 4} \right),\,Q\left( {5,\,4,\, - 6} \right)$$ and $$R\left( {9,\,8,\, - 10} \right)$$ are collinear, then $$R$$ divides $$PQ$$ in the ratio :
A
$$3 : 2$$ internally
B
$$3 : 2$$ externally
C
$$2 : 1$$ internally
D
$$2 : 1$$ externally
Answer :
$$3 : 2$$ externally
Suppose $$R$$ divides $$PQ$$ in the ration $$\lambda :1.$$
Then, the coordinates of $$R$$ are
$$\left( {\frac{{5\lambda + 3}}{{\lambda + 1}},\,\frac{{4\lambda + 2}}{{\lambda + 1}},\,\frac{{ - 6\lambda - 4}}{{\lambda + 1}}} \right)$$
But, the coordinates of $$R$$ are given as $$\left( {9,\,8,\, - 10} \right)$$
$$\eqalign{
& \therefore \,\frac{{5\lambda + 3}}{{\lambda + 1}} = 9,\,\frac{{4\lambda + 2}}{{\lambda + 1}} = 8{\text{ and }} \cr
& \frac{{ - 6\lambda - 4}}{{\lambda + 1}} = - 10 \Rightarrow \lambda = - \frac{3}{2} \cr} $$
Hence, $$R$$ divides $$PQ$$ externally in the ratio $$3 : 2$$
145.
If the straight line $$\frac{{x - {x_0}}}{\ell } = \frac{{y - {y_0}}}{m} = \frac{{z - {z_0}}}{n}$$ is parallel to the plane $$ax + by + cz + d = 0$$ then which one of the following is correct ?
A
$$\ell + m + n = 0$$
B
$$a + b + c = 0$$
C
$$\frac{a}{\ell } + \frac{b}{m} + \frac{c}{n} = 0$$
D
$$a\ell + bm + cn = 0$$
Answer :
$$a\ell + bm + cn = 0$$
If the line is parallel to the plane then $$a\ell + bm + cn = 0.$$
146.
The coordinates of point in $$xy$$ -plane which is equidistant from three points $$A\left( {2,\,0,\,3} \right),\,B\left( {0,\,3,\,2} \right)$$ and $$C\left( {0,\,0,\,1} \right)$$ are :
A
$$\left( {3,\,2,\,0} \right)$$
B
$$\left( {3,\,4,\,0} \right)$$
C
$$\left( {0,\,0,\,3} \right)$$
D
$$\left( {2,\,3,\,0} \right)$$
Answer :
$$\left( {3,\,2,\,0} \right)$$
We know that $$z$$-co-ordinate of every point on $$xy$$ -plane is zero. So, let $$P\left( {x,\,y,\,0} \right)$$ be a point in $$xy$$ -plane such that
$$\eqalign{
& PA = PB = PC \cr
& {\text{Now}},\,PA = PB \Rightarrow P{A^2} = P{B^2} \cr
& \Rightarrow {\left( {x - 2} \right)^2} + {\left( {y - 0} \right)^2} + {\left( {0 - 3} \right)^2} = {\left( {x - 0} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {0 - 2} \right)^2} \cr
& \Rightarrow 4x - 6y = 0 \cr
& \Rightarrow 2x - 3y = 0......\left( 1 \right) \cr
& PB = PC \Rightarrow P{B^2} = P{C^2} \cr
& \Rightarrow {\left( {x - 0} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {0 - 2} \right)^2} = {\left( {x - 0} \right)^2} + {\left( {y - 0} \right)^2} + {\left( {0 - 1} \right)^2} \cr
& \Rightarrow - 6y + 12 = 0 \cr
& \Rightarrow y = 2......\left( 2 \right) \cr
& {\text{Putting }}y = 2{\text{ in }}\left( 1 \right){\text{, we obtain }}x = 3 \cr
& {\text{Hence, the required point is }}\left( {3,\,2,\,0} \right) \cr} $$
147.
A line with direction cosines proportional to $$2,\,1,\,2$$ meets each of the lines $$x=y+a=z$$ and $$x+a=2y=2z.$$ The co-ordinates of each of the points of intersection are given by :
A
$$\left( {2a,\,3a,\,3a} \right),\,\left( {2a,\,a,\,a} \right)$$
B
$$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$
C
$$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,2a} \right)$$
D
$$\left( {3a,\,3a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$
Let a point on the line $$x=y+a=z$$ is $$\left( {\lambda ,\,\lambda - a,\,\lambda } \right)$$ and a point on the line $$x+a=2y=2z$$ is $$\left( {\mu - a,\,\frac{\mu }{2},\,\frac{\mu }{2}} \right),$$ then direction ratio of the line joining these points are $$\lambda - \mu + a,\,\lambda - a - \frac{\mu }{2},\,\lambda - \frac{\mu }{2}$$
If it respresents the required line, then
$$\frac{{\lambda - \mu + a}}{2} = \frac{{\lambda - a - \frac{\mu }{2}}}{1} = \frac{{\lambda - \frac{\mu }{2}}}{2}$$
on solving we get $$\lambda = 3a,\,\,\mu = 2a$$
$$\therefore $$ The required points of intersection are
$$\left( {3a,\,3a - a,\,3a} \right)$$ and $$\left( {2a - a,\,\frac{{2a}}{2},\,\frac{{2a}}{2}} \right)$$
or $$\left( {3a,\,2a,\,3a} \right)$$ and $$\left( {a,\,a,\,a} \right)$$
148.
The ratio in which the line joining $$\left( {2,\,4,\,5} \right),\,\left( {3,\,5,\, - 4} \right)$$ is divided by the $$yz$$ plane, is :
A
$$2:3$$
B
$$3:2$$
C
$$ - 2 :3$$
D
$$4: - 3$$
Answer :
$$2:3$$
Let the point $$R$$ divides the line joining the points $$P\left( {2,\,4,\,5} \right)$$ and $$Q\left( {3,\,5,\, - 4} \right)$$ in the ratio $$m : n.$$
$$\therefore $$ The coordinate of $$R$$ is
$$\left( {\frac{{3m - 2n}}{{m + n}},\,\frac{{5m - 4n}}{{m + n}},\,\frac{{ - 4m + 5n}}{{m + n}}} \right)$$
Since, the point $$R$$ is on $$yz$$ -plane, therefore $$x$$-co-ordinate will be zero.
$$\eqalign{
& \therefore \,\frac{{3m - 2n}}{{m + n}} = 0 \cr
& \Rightarrow 3m - 2n = 0 \cr
& \Rightarrow 3m = 2n \cr
& \Rightarrow \frac{m}{n} = \frac{2}{3} \cr} $$
149.
The image of the line $$\frac{{x - 1}}{3} = \frac{{y - 3}}{1} = \frac{{z - 4}}{{ - 5}}$$ in the plane $$2x-y+z+3=0$$ is the line :
150.
If $$OABC$$ is a tetrahedron where $$O$$ is the origin and $$A,\,B,\,C$$ are three other vertices with position vectors $$\overrightarrow a ,\,\overrightarrow b $$ and $$\overrightarrow c $$ respectively, then the centre of sphere circumscribing the tetrahedron is given by the position vector :
A
$$\frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
B
$$\frac{{{b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {a^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
C
$$\frac{{{b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {a^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
D
$$\frac{{{a^2}\left( {\overrightarrow a \times \overrightarrow b } \right) + {b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {c^2}\left( {\overrightarrow c \times \overrightarrow a } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
Answer :
$$\frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
If the centre $$'P'$$ is with position vector $$\overrightarrow r ,$$
Then $$\overrightarrow a - \overrightarrow r = \overrightarrow {PA} ,\,\overrightarrow b - \overrightarrow r = \overrightarrow {PB} ,\,\overrightarrow c - \overrightarrow r = \overrightarrow {PC} ,$$
Where $$\left| {\overrightarrow {PA} } \right| = \left| {\overrightarrow {PB} } \right| = \left| {\overrightarrow {PC} } \right| = \left| {\overrightarrow {OP} } \right| = \left| {\overrightarrow r } \right|$$
$$\eqalign{
& {\text{Consider }}\left| {\overrightarrow a - \overrightarrow r } \right| = \left| {\overrightarrow r } \right| \cr
& \Rightarrow \left( {\overrightarrow a - \overrightarrow r } \right).\left( {\overrightarrow a - \overrightarrow r } \right) = \overrightarrow r .\overrightarrow r \cr
& \Rightarrow {a^2} - 2\overrightarrow a .\overrightarrow r + {r^2} = {r^2} \cr
& \Rightarrow {a^2} = 2\overrightarrow a .\overrightarrow r \cr
& {\text{Similarly, }}{b^2} = 2\overrightarrow b .\overrightarrow r {\text{ and }}{c^2} = 2\overrightarrow c .\overrightarrow r \cr
& {\text{Since, }}\left( {\overrightarrow b \times \overrightarrow c } \right),\,\left( {\overrightarrow c \times \overrightarrow a } \right){\text{ and }}\left( {\overrightarrow a \times \overrightarrow b } \right){\text{ are non - coplanar,}} \cr
& {\text{then }}\overrightarrow r = x\left( {\overrightarrow b \times \overrightarrow c } \right) + y\left( {\overrightarrow c \times \overrightarrow a } \right) + z\left( {\overrightarrow a \times \overrightarrow b } \right) \cr
& \Rightarrow \overrightarrow a .\overrightarrow r = x\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) + y.0 + z.0 \cr
& \Rightarrow \overrightarrow a .\overrightarrow r = x\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] \cr
& \Rightarrow x = \frac{{\overrightarrow a .\overrightarrow r }}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr
& \Rightarrow x = \frac{{{a^2}}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr
& {\text{Similarly, }}y = \frac{{{b^2}}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{\text{ and }}z = \frac{{{c^2}}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr
& {\text{Therefore, }}\overrightarrow r = \frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr} $$