3D Geometry and Vectors MCQ Questions & Answers in Geometry | Maths
Learn 3D Geometry and Vectors MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
201.
Given that the vectors $$\overrightarrow \alpha $$ and $$\overrightarrow \beta $$ are non-collinear. The values of $$x$$ and $$y$$ for which $$\overrightarrow u - \overrightarrow v = \overrightarrow w $$ holds true if $$\overrightarrow u = 2x\overrightarrow \alpha + y\overrightarrow \beta ,\,\overrightarrow v = 2y\overrightarrow \alpha + 3x\overrightarrow \beta $$ and $$\overrightarrow w = 2\overrightarrow \alpha - 5\overrightarrow \beta ,$$ are :
202.
If $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are three non-coplanar vectors, then the value of $$\frac{{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left( {\overrightarrow c \times \overrightarrow a } \right).\overrightarrow b }} + \frac{{\overrightarrow b .\left( {\overrightarrow a \times \overrightarrow c } \right)}}{{\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right)}}$$ is :
A
0
B
2
C
1
D
none of these
Answer :
0
By definition of scalar triple product $${\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}$$ can be written as $$\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]$$
$$\eqalign{
& \frac{{\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right)}}{{\left( {\overrightarrow c \times \overrightarrow a } \right).\overrightarrow b }} + \frac{{\overrightarrow b .\left( {\overrightarrow a \times \overrightarrow c } \right)}}{{\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right)}} \cr
& = \frac{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{{\left[ {\overrightarrow c \overrightarrow a \overrightarrow b } \right]}} + \frac{{\left[ {\overrightarrow b \overrightarrow a \overrightarrow c } \right]}}{{\left[ {\overrightarrow c \overrightarrow a \overrightarrow b } \right]}} \cr
& = \frac{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} - \frac{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}} \cr
& = 1 - 1 \cr
& = 0 \cr
& \because \,\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] = \left[ {\overrightarrow b \overrightarrow c \overrightarrow a } \right] = \left[ {\overrightarrow c \overrightarrow a \overrightarrow b } \right] \cr
& {\text{but }}\left[ {\overrightarrow b \overrightarrow c \overrightarrow a } \right] = - \left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right] \cr} $$
203.
The unit vector which is orthogonal to the vector $$3\hat i + 2\hat j + 6\hat k$$ and is coplanar with the vectors $$2\hat i + \hat j + \hat k$$ and $$\hat i - \hat j + \hat k$$ is :
A
$$\frac{{2\hat i - 6\hat j + \hat k}}{{\sqrt {41} }}$$
B
$$\frac{{2\hat i - 3\hat j}}{{\sqrt {13} }}$$
C
$$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$
D
$$\frac{{4\hat i + 3\hat j - 3\hat k}}{{\sqrt {34} }}$$
Answer :
$$\frac{{3\hat i - \hat k}}{{\sqrt {10} }}$$
Any vector coplanar to $${\vec a}$$ and $${\vec b}$$ can be written as
$$\eqalign{
& \vec r = \vec a + \lambda \vec b \cr
& \vec r = \left( {1 + 2\lambda } \right)\hat i + \left( { - 1 + \lambda } \right)\hat j + \left( {1 + \lambda } \right)\hat k \cr} $$
Since $${\vec r}$$ is orthogonal to $$5\hat i + 2\hat j + 6\hat k$$
$$\eqalign{
& \Rightarrow 5\left( {1 + 2\lambda } \right) + 2\left( { - 1 + \lambda } \right) + 6\left( {1 + \lambda } \right) = 0 \cr
& \Rightarrow 9 + 18\lambda = 0 \cr
& \Rightarrow \lambda = - \frac{1}{2} \cr
& \therefore \,\vec r{\text{ is 3}}\hat j - \hat k \cr} $$
Since $${\hat r}$$ is a unit vector, $$\therefore \,\,\hat r = \frac{{{\text{3}}\hat j - \hat k}}{{\sqrt {10} }}$$
204.
The vectors $$\overrightarrow {AB} = 3\hat i + 5\hat j + 4\hat k$$ and $$\overrightarrow {AC} = 5\hat i - 5\hat j + 2\hat k$$ are the sides of a triangle $$ABC.$$ The length of the median through $$A$$ is :
A
$$\sqrt {13} {\text{ units}}$$
B
$${\text{2}}\sqrt 5 {\text{ units}}$$
C
$$5{\text{ units}}$$
D
$${\text{10 units}}$$
Answer :
$$5{\text{ units}}$$
Let the given vectors be $$\overrightarrow {AB} = 3\hat i + 5\hat j + 4\hat k$$ and $$\overrightarrow {AC} = 5\hat i - 5\hat j + 2\hat k$$
Let $$AM$$ be the median through $$A$$
$$\eqalign{
& \therefore \,\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cr
& = \frac{1}{2}\left[ {\left( {3\hat i + 5\hat j + 4\hat k} \right) + \left( {5\hat i - 5\hat j + 2\hat k} \right)} \right] \cr
& = \frac{1}{2}\left( {8\hat i + 6\hat k} \right) \cr
& = \left( {4\hat i + 3\hat k} \right) \cr} $$
$$\therefore $$ Length of the median $$AM = \sqrt {{4^2} + {3^2}} = 5{\text{ units}}$$
205.
Let $$a=2i+j+k,\,b=i+2j-k$$ and a unit vector $$c$$ be coplanar. If $$c$$ is perpendicular to $$a,$$ then $$c=?$$
A
$$\frac{1}{{\sqrt 2 }}\left( { - j + k} \right)$$
B
$$\frac{1}{{\sqrt 3 }}\left( {- i - j - k} \right)$$
C
$$\frac{1}{{\sqrt 5 }}\left( { i - 2j} \right)$$
D
$$\frac{1}{{\sqrt 3 }}\left( { i - j - k} \right)$$
As $$c$$ is coplanar with $$a$$ and $$b,$$ we take,
$$c = \alpha a + \beta b.....(1)$$
where $$\alpha ,\beta $$ are scalars.
As $$c$$ is perpendicular to $$a,\,c.a=0$$
$$ \therefore $$ From (1) we get, $$0 = \alpha \,a.a + \beta \,b.a$$
$$\eqalign{
& \Rightarrow 0 = \alpha \left( 6 \right) + \beta \left( {2 + 2 - 1} \right) = 3\left( {2\alpha + \beta } \right) \Rightarrow \beta = - 2\alpha \cr
& {\text{Thus, }}c = \alpha \left( {a - 2b} \right) = \alpha \left( { - 3j + 3k} \right) = 3\alpha \left( { - j + k} \right) \cr
& \Rightarrow {\left| {\vec c} \right|^2} = 9{\alpha ^2}\left( {1 + 1} \right) = 18{\alpha ^2}\,\, \Rightarrow 1 = 18{\alpha ^2} \cr
& \Rightarrow \alpha = \pm \frac{1}{{3\sqrt 2 }} \cr
& \therefore c = \pm \frac{1}{{\sqrt 2 }}\left( { - j + k} \right) \cr} $$
Thus, we may take $$c = \frac{1}{{\sqrt 2 }}\left( { - j + k} \right).$$
206.
Let $$\overrightarrow a = \overrightarrow i - 2\overrightarrow j + 3\overrightarrow k ,\,\overrightarrow b = 2\overrightarrow i + 3\overrightarrow j - \overrightarrow k $$ and $$\overrightarrow c = \lambda \overrightarrow i + \overrightarrow j + \left( {2\lambda - 1} \right)\overrightarrow k .$$ If $$\overrightarrow c $$ is parallel to the plane of the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ then $$\lambda $$ is :
A
$$1$$
B
$$0$$
C
$$ - 1$$
D
$$2$$
Answer :
$$0$$
$$\eqalign{
& \overrightarrow c ||{\text{ the plane of }}\overrightarrow a {\text{ and }}\overrightarrow b \Rightarrow \overrightarrow c \bot \overrightarrow a \times \overrightarrow b \cr
& \therefore \,\overrightarrow a \times \overrightarrow b .\overrightarrow c = 0 \cr
& {\text{or }}\left( {\overrightarrow i - 2\overrightarrow j + 3\overrightarrow k } \right) \times \left( {2\overrightarrow i + 3\overrightarrow j - \overrightarrow k } \right).\left\{ {\lambda \overrightarrow i + \overrightarrow j + \left( {2\lambda - 1} \right)\overrightarrow k } \right\} = 0 \cr
& {\text{or }}\left( { - 7\overrightarrow i + 7\overrightarrow j + 7\overrightarrow k } \right).\left\{ {\lambda \overrightarrow i + \overrightarrow j + \left( {2\lambda - 1} \right)\overrightarrow k } \right\} = 0 \cr
& {\text{or }} - 7\lambda + 7 + 7\left( {2\lambda - 1} \right) = 0 \cr
& {\text{or }}\lambda = 0 \cr} $$
207.
Let $$\vec a,\,\vec b$$ and $$\vec c$$ be three non-zero vectors such that no two of these are collinear. If the vector $$\vec a + 2\vec b$$ is collinear with $$\vec c$$ and $$\vec b + 3\vec c$$ is collinear with $$\vec a$$ ($$\lambda $$ being some non-zero scalar) then $$\vec a + 2\vec b + 6\vec c$$ equals
A
$$0$$
B
$$\lambda \vec b$$
C
$$\lambda \vec c$$
D
$$\lambda \vec a$$
Answer :
$$\lambda \vec c$$
Let $$\vec a + 2\vec b = t\vec c$$ and $$\vec b + 3\vec c = s\vec a,$$ where $$t$$ and $$s$$ are scalars. Adding, we get
$$\eqalign{
& \vec a + 3\vec b + 3\vec c = t\vec c + s\vec a \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = t\vec c + s\vec a - \vec b + 3\vec c \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = t\vec c + \left( {\vec b + 3\vec c} \right) - \vec b + 3\vec c \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = \left( {t + 6} \right)\vec c\,\,\,\,\,\,\,\left[ {{\text{using }}s\vec a = \vec b + 3\vec c} \right] \cr
& \Rightarrow \vec a + 2\vec b + 6\vec c = \lambda \vec c,{\text{ where }}\lambda = t + 6 \cr} $$
208.
If $$\overrightarrow {{r_1}} = \lambda \hat i + 2\hat j + \hat k,\,\overrightarrow {{r_2}} = \hat i + \left( {2 - \lambda } \right)\hat j + 2\hat k$$ are such that $$\left| {\overrightarrow {{r_1}} } \right| > \left| {\overrightarrow {{r_2}} } \right|,$$ then $$\lambda $$ satisfies which one of the following ?
209.
If $$\vec a,\,\vec b$$ and $$\vec c$$ are unit vectors, then $${\left| {\vec a - \vec b} \right|^2} + {\left| {\vec b - \vec c} \right|^2} + {\left| {\vec c - \vec a} \right|^2}$$ does NOT exceed :
A
$$4$$
B
$$9$$
C
$$8$$
D
$$6$$
Answer :
$$9$$
$$\hat a,\,\hat b,\,\hat c$$ are units vectors.
$$\eqalign{
& \therefore \hat a.\hat a = \hat b.\hat b = \hat c.\hat c = 1 \cr
& {\text{Now, }}x = {\left| {\hat a - \hat b} \right|^2} + {\left| {\hat b - \hat c} \right|^2} + {\left| {\hat c - \hat a} \right|^2} \cr
& = \hat a.\hat a + \hat b.\hat b - 2\hat a.\hat b + \hat b.\hat b + \hat c.\hat c - 2\hat b.\hat c + c.\hat c + \hat a.\hat a - 2\hat c.\hat a \cr
& = 6 - 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right).....(1) \cr
& {\text{Also}}, \cr
& \Rightarrow \left| {\hat a + \hat b + \hat c} \right| \geqslant 0\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow {\left| {\hat a + \hat b + \hat c} \right|^2} \geqslant 0 \cr
& \Rightarrow \hat a.\hat a + \hat b.\hat b + \hat c.\hat c + 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \geqslant 0 \cr
& \Rightarrow 3 + 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \geqslant 0 \cr
& \Rightarrow 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \geqslant - 3 \cr
& \Rightarrow - 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \leqslant 3 \cr
& \Rightarrow 6 - 2\left( {\hat a.\hat b + \hat b.\hat c + \hat c.\hat a} \right) \leqslant 9.....(2) \cr} $$
From (1) and (2), $$x \leqslant 9$$
$$\therefore \,x$$ does not exceed 9
210.
The distance between the lines $$\frac{{x - 4}}{2} = \frac{{y + 1}}{{ - 3}} = \frac{z}{6}$$ and $$\frac{x}{{ - 1}} = \frac{{y - 1}}{{\frac{3}{2}}} = \frac{{z + 1}}{{ - 3}}$$ is :