3.
What is the value of $$n$$ so that the angle between the lines having direction ratios $$\left( {1,\,1,\,1} \right)$$ and $$\left( {1,\, - 1,\,n} \right)$$ is $${60^ \circ }\,?$$
4.
The perpendicular distance of $$P\left( {1,\,2,\,3} \right)$$ from the line $$\frac{{x - 6}}{3} = \frac{{y - 7}}{2} = \frac{{z - 7}}{{ - 2}}$$ is :
A
$$7$$
B
$$5$$
C
$$0$$
D
$$6$$
Answer :
$$7$$
The point $$A\left( {6,\,7,\,7} \right)$$ is on the line . Let the perpendicular from $$P$$ meet the line in $$L$$. Then
$$A{P^2} = {\left( {6 - 1} \right)^2} + {\left( {7 - 2} \right)^2} + {\left( {7 - 3} \right)^2} = 66$$
$$\eqalign{
& {\text{Also }}AL = {\text{ projection of }}AP\,{\text{on line}} \cr
& \left( {{\text{actual d}}{\text{.c}}{\text{.'s }}\frac{3}{{\sqrt {17} }},\,\frac{2}{{\sqrt {17} }},\,\frac{{ - 2}}{{\sqrt {17} }}} \right) \cr
& \Rightarrow \left( {6 - 1} \right).\frac{3}{{\sqrt {17} }} + \left( {7 - 2} \right).\frac{2}{{\sqrt {17} }} + \left( {7 - 3} \right).\frac{{ - 2}}{{\sqrt {17} }} = \sqrt {17} \cr
& \therefore \, \bot \,{\text{distance }}d{\text{ of }}P{\text{ from the line is given by}} \cr
& {d^2} = A{P^2} - A{L^2} \cr
& \Rightarrow {d^2} = 66 - 17 \cr
& \Rightarrow {d^2} = 49 \cr
& {\text{So, that }}d = 7 \cr} $$
5.
A line makes $${45^ \circ }$$ with positive $$x$$-axis and makes equal angles with positive $$y,\, z$$ axes, respectively. What is the sum of the three angles which the line makes with positive $$x,\,y$$ and $$z$$ axes ?
A
$${180^ \circ }$$
B
$${165^ \circ }$$
C
$${150^ \circ }$$
D
$${135^ \circ }$$
Answer :
$${165^ \circ }$$
We know that sum of square of direction cosines $$ = 1$$
$$\eqalign{
& {\text{i}}{\text{.e}}{\text{., }}{\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1 \cr
& \Rightarrow {\cos ^2}{45^ \circ } + {\cos ^2}\beta + {\cos ^2}\beta = 1 \cr
& \left( {{\text{As given }}\alpha = {{45}^ \circ }{\text{ and }}\beta = \gamma } \right) \cr
& \Rightarrow \frac{1}{2} + 2{\cos ^2}\beta = 1 \cr
& \Rightarrow {\cos ^2}\beta = \frac{1}{4} \cr
& \Rightarrow \cos \,\beta = \pm \frac{1}{2}, \cr} $$
Negative value is discarded,
Since the line makes angle with positive axes.
Hence, $$\cos \,\beta = \frac{1}{2} \Rightarrow \cos \,\beta = \cos \,{60^ \circ } \Rightarrow \beta = {60^ \circ }$$
$$\therefore $$ Required sum $$ = \alpha + \beta + \gamma = {45^ \circ } + {60^ \circ } + {60^ \circ } = {165^ \circ }$$
6.
Given the line $$L:\frac{{x - 1}}{3} = \frac{{y + 1}}{2} = \frac{{z - 3}}{{ - 1}}$$ and the plane $$\pi \,:x - 2y = z.$$ Of the following assertions, the only one that is always true is :
A
$$L$$ is $$ \bot $$ to $$\pi $$
B
$$L$$ lies in $$\pi $$
C
$$L$$ is parallel to $$\pi $$
D
None of these
Answer :
$$L$$ lies in $$\pi $$
Since $$3\left( 1 \right) + 2\left( { - 2} \right) + \left( { - 1} \right)\left( { - 1} \right) = 3 - 4 + 1 = 0$$
$$\therefore $$ given line is $$ \bot $$ to the normal to the plane i.e., given line is parallel to the given plane.
Also $$\left( {1,\, - 1,\,3} \right)$$ lies on the plane $$x - 2y - z = 0$$ if $$1 - 2\left( { - 1} \right) - 3 = 0$$ i.e. $$1 + 2 - 3 = 0$$ which is true.
$$\therefore \,L$$ lies in plane $$\pi .$$
7.
A plane which is perpendicular to two planes $$2x - 2y + z = 0$$ and $$x - y + 2z = 4,$$ passes through $$\left( {1,\, - 2,\,1} \right).$$ The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$ is :
A
$$0$$
B
$$1$$
C
$$\sqrt 2 $$
D
$$2\sqrt 2 $$
Answer :
$$2\sqrt 2 $$
The equation of plane through the point $$\left( {1,\, - 2,\,1} \right)$$ and perpendicular to the planes $$2x-2y+z=0$$ and $$x-y+2z=4$$ is given by
\[\left| \begin{array}{l}
x - 1\,\,\,\,\,y + 2\,\,\,\,\,z - 1\\
\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 2\,\,\,\,\,\,\,\,\,\,\,\,\,1\\
\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 1\,\,\,\,\,\,\,\,\,\,\,\,\,2
\end{array} \right| = 0\,\, \Rightarrow x + y + 1 = 0\]
It’s distance from the point (1, 2, 2) is
$$\left| {\frac{{1 + 2 + 1}}{{\sqrt 2 }}} \right| = 2\sqrt 2 .$$
8.
The two lines $$x=ay+b,\,z=cy+d\,;$$ and $$x=a'y+b',\,z=c'y+d'$$ are perpendicular to each other if :
9.
The point $$P$$ is the intersection of the straight line joining the points $$Q\left( {2,\,3,\,5} \right)$$ and $$R\left( {1,\, - 1,\,4} \right)$$ with the plane $$5x-4y-z=1.$$ If $$S$$ is the foot of the perpendicular drawn from the
point $$T\left( {2,\,1,\,4} \right)$$ to $$QR,$$ then the length of the line segment $$PS$$ is :
A
$$\frac{1}{{\sqrt 2 }}$$
B
$$\sqrt 2 $$
C
$$2$$
D
$$2\sqrt 2 $$
Answer :
$$\frac{1}{{\sqrt 2 }}$$
Equation of straight line joining $$Q\left( {2,\,3,\,5} \right)$$ and $$R\left( {1,\, - 1,\,4} \right)$$ is
$$\eqalign{
& \frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{{ - 4}} = \frac{{z - 5}}{1} = \lambda \cr
& {\text{Let }}P\left( { - \lambda + 2,\, - 4\lambda + 3,\, - \lambda + 5} \right) \cr} $$
As $$P$$ lies on $$5x-4y-z=1$$
$$\eqalign{
& \therefore - 5\lambda + 10 + 16\lambda - 12 + \lambda - 5 = 1 \cr
& \Rightarrow 12\lambda = 8 \cr
& \Rightarrow \lambda = \frac{2}{3} \cr
& \therefore P = \left( {\frac{4}{3},\,\frac{1}{3},\,\frac{{13}}{3}} \right) \cr} $$
Now let point $$S$$ on $$QR$$ be
$$\left( { - \mu + 2,\, - 4\mu + 3,\, - \mu + 5} \right)$$
$$\because \,S$$ is the foot of perpendicular drawn from $$T\left( {2,\,1,\,4} \right)$$ to $$QR,$$ where dr’s of $$ST$$ are $$\mu ,\,4\mu - 2,\,\mu - 1$$ and dr’s of $$QR$$ are $$-1,\,-4,\,-1$$
$$\eqalign{
& \therefore - \mu - 16\mu + 8 - \mu + 1 = 0 \cr
& \Rightarrow 18\mu = 9 \cr
& \Rightarrow \mu = \frac{1}{2} \cr
& \therefore S = \left( {\frac{3}{2},\,1,\,\frac{9}{2}} \right) \cr} $$
$$\therefore $$ Distance between $$P$$ and $$S$$
$$\eqalign{
& = \sqrt {{{\left( {\frac{4}{3} - \,\frac{3}{2}} \right)}^2} + {{\left( {\frac{1}{3} - 1} \right)}^2} + {{\left( {\frac{{13}}{3} - \frac{9}{2}} \right)}^2}} \cr
& = \sqrt {\frac{1}{{36}} + \frac{4}{9} + \frac{1}{{36}}} \cr
& = \frac{1}{{\sqrt 2 }} \cr} $$
10.
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes $$2x+y-2z=5$$ and $$3x-6y-2z=7,$$ is :