Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

151. The distance between the line $$\overrightarrow r .2\hat i - 2\hat j + 3\hat k + \lambda \left( {\hat i - \hat j + 4\hat k} \right)$$       and the plane $$\overrightarrow r .\left( {\hat i - 5\hat j + \hat k} \right) = 5$$     is :

A $$\frac{{10}}{{3\sqrt 3 }}$$
B $$\frac{{10}}{9}$$
C $$\frac{{10}}{3}$$
D $$\frac{3}{{10}}$$
Answer :   $$\frac{{10}}{{3\sqrt 3 }}$$

152. What is the distance between the planes $$x - 2y + z - 1 = 0$$    and $$ - 3x + 6y - 3z + 2 = 0\,?$$

A $$3\,{\text{units}}$$
B $$1\,{\text{units}}$$
C $$0$$
D None of the above
Answer :   None of the above

153. If the image of the point $$P\left( {1,\, - 2,\, - 3} \right)$$   in the plane, $$2x+3y- 4z+22=0$$     measured parallel to line, $$\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$$   is $$Q,$$ then $$PQ$$  is equal to :

A $$6\sqrt 5 $$
B $$3\sqrt 5 $$
C $$2\sqrt {42} $$
D $$\sqrt {42} $$
Answer :   $$2\sqrt {42} $$

154. If the line, $$\frac{{x - 3}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 4}}{3}$$     lies in the plane, $$lx+my-z=9,$$    then $${l^2} + {m^2}$$   is equal to :

A $$5$$
B $$2$$
C $$26$$
D $$18$$
Answer :   $$2$$

155. From a point $$P\left( {\lambda ,\,\lambda ,\,\lambda } \right),$$    perpendiculars $$PQ$$  and $$PR$$  are drawn, respectively, on the lines $$y = x,\,z = 1$$    and $$y = - x,\,z = - 1.$$    If $$\angle QPR$$   is a right angle, then the possible value(s) of $$\lambda $$ is/are :

A $$2$$
B $$1$$
C $$ - 1$$
D $$ - \sqrt 2 $$
Answer :   $$ - 1$$

156. Consider the following relations among the angles $$\alpha ,\,\beta $$  and $$\gamma $$ made by a vector with the coordinate axes
$$\eqalign{ & {\bf{I}}{\bf{.}}\,\,\cos \,2\alpha + \cos \,2\beta + \cos \,2\gamma = - 1 \cr & {\bf{II}}{\bf{.}}\,\,{\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma = 1 \cr} $$
Which of the above is/are correct ?

A Only $${\bf{I}}$$
B Only $${\bf{II}}$$
C Both $${\bf{I}}$$ and $${\bf{II}}$$
D Neither $${\bf{I}}$$ nor $${\bf{II}}$$
Answer :   Only $${\bf{I}}$$

157. $$L$$ is the foot of the perpendicular drawn from a point $$P\left( {6,\,7,\,8} \right)$$   on the $$xy$$ -plane. What are the coordinates of point $$L\,?$$

A $$\left( {6,\,0,\,0} \right)$$
B $$\left( {6,\,7,\,0} \right)$$
C $$\left( {6,\,0,\,8} \right)$$
D none of these
Answer :   $$\left( {6,\,7,\,0} \right)$$

158. The plane $$x + 3y + 13 = 0$$    passes through the line of intersection of the planes $$2x - 8y + 4z = p$$    and $$3x - 5y + 4z + 10 = 0.$$     If the plane is perpendicular to the plane $$3x - y - 2z - 4 = 0,$$     then the value of $$p$$ is equal to :

A $$2$$
B $$5$$
C $$9$$
D $$3$$
Answer :   $$3$$

159. The co-ordinates of the points $$A$$ and $$B$$ are $$\left( {2,\,3,\,4} \right)$$   and $$\left( { - 2,\,5,\, - 4} \right)$$   respectively. If a point $$P$$ moves so that $$P{A^2} - P{B^2} = k$$    where $$k$$ is a constant, then the locus of $$P$$ is :

A $$ - 8x + 4y - 16z + 16 = k$$
B $$ - 8x - 4y - 16z - 16 = k$$
C $$ - 8x + 4y - 16z - 16 = k$$
D none of these
Answer :   $$ - 8x + 4y - 16z - 16 = k$$

160. The foot of the perpendicular from the point $$\left( {1,\,6,\,3} \right)$$   to the line $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$     is :

A $$\left( {1,\,3,\,5} \right)$$
B $$\left( { - 1,\, - 1,\, - 1} \right)$$
C $$\left( {2,\,5,\,8} \right)$$
D $$\left( { - 2,\, - 3,\, - 4} \right)$$
Answer :   $$\left( {1,\,3,\,5} \right)$$