Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
151.
The distance between the line $$\overrightarrow r .2\hat i - 2\hat j + 3\hat k + \lambda \left( {\hat i - \hat j + 4\hat k} \right)$$ and the plane $$\overrightarrow r .\left( {\hat i - 5\hat j + \hat k} \right) = 5$$ is :
A
$$\frac{{10}}{{3\sqrt 3 }}$$
B
$$\frac{{10}}{9}$$
C
$$\frac{{10}}{3}$$
D
$$\frac{3}{{10}}$$
Answer :
$$\frac{{10}}{{3\sqrt 3 }}$$
It is obvious that the given line and plane are parallel.
Given point on the line is $$A\left( {2,\, - 2,\,3} \right).$$
$$B\left( {0,\,0,\,5} \right)$$ is a point on the plane. Therefore,
$$\overrightarrow {\,\,\,\,\,AB\,\,\,\,\,} = \left( {2 - 0} \right)\hat i + \left( { - 2 - 0} \right)\hat j + \left( {3 - 5} \right)\hat k$$
Then distance of $$B$$ from the plane $$=$$ projection of $$\overrightarrow {\,\,\,\,\,AB\,\,\,\,\,} $$ on vector $$\hat i + 5\hat j + \hat k$$
$$\eqalign{
& P = \left| {\frac{{\left( {2\hat i - 2\hat j - 2\hat k} \right).\left( {\hat i + 5\hat j + \hat k} \right)}}{{\sqrt {1 + 25 + 1} }}} \right| \cr
& \Rightarrow P = \left| {\frac{{2 - 10 - 2}}{{\sqrt {27} }}} \right| \cr
& \Rightarrow P = \frac{{10}}{{3\sqrt 3 }} \cr} $$
152.
What is the distance between the planes $$x - 2y + z - 1 = 0$$ and $$ - 3x + 6y - 3z + 2 = 0\,?$$
153.
If the image of the point $$P\left( {1,\, - 2,\, - 3} \right)$$ in the plane, $$2x+3y- 4z+22=0$$ measured parallel to line, $$\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$$ is $$Q,$$ then $$PQ$$ is equal to :
154.
If the line, $$\frac{{x - 3}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 4}}{3}$$ lies in the plane, $$lx+my-z=9,$$ then $${l^2} + {m^2}$$ is equal to :
A
$$5$$
B
$$2$$
C
$$26$$
D
$$18$$
Answer :
$$2$$
Line lies in the plane $$ \Rightarrow \left( {3,\, - 2,\, - 4} \right)$$ lie in the plane
$$ \Rightarrow 3l - 2m + 4 = 9{\text{ or }}3l - 2m = 5.....(1)$$
Also, $$l,\,m,\,-1$$ are dr's of line perpendicular to plane and $$2,\,-1,\,3$$ are dr's of line lying in the plane
$$ \Rightarrow 2l - m - 3 = 0{\text{ or 2}}l - m = 3.....(2)$$
Solving (1) and (2) we get $$l=1$$ and $$m=-1$$
$$ \Rightarrow {l^2} + {m^2} = 2$$
155.
From a point $$P\left( {\lambda ,\,\lambda ,\,\lambda } \right),$$ perpendiculars $$PQ$$ and $$PR$$ are drawn, respectively, on the lines $$y = x,\,z = 1$$ and $$y = - x,\,z = - 1.$$ If $$\angle QPR$$ is a right angle, then the possible value(s) of $$\lambda $$ is/are :
156.
Consider the following relations among the angles $$\alpha ,\,\beta $$ and $$\gamma $$ made by a vector with the coordinate axes
$$\eqalign{
& {\bf{I}}{\bf{.}}\,\,\cos \,2\alpha + \cos \,2\beta + \cos \,2\gamma = - 1 \cr
& {\bf{II}}{\bf{.}}\,\,{\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma = 1 \cr} $$
Which of the above is/are correct ?
157.
$$L$$ is the foot of the perpendicular drawn from a point $$P\left( {6,\,7,\,8} \right)$$ on the $$xy$$ -plane. What are the coordinates of point $$L\,?$$
A
$$\left( {6,\,0,\,0} \right)$$
B
$$\left( {6,\,7,\,0} \right)$$
C
$$\left( {6,\,0,\,8} \right)$$
D
none of these
Answer :
$$\left( {6,\,7,\,0} \right)$$
Since $$L$$ is the foot of perpendicular from $$P$$ on the $$xy$$ -plane, $$z$$-coordinate is zero in the $$xy$$ -plane. Hence, coordinates of $$L$$ are $$\left( {6,\,7,\,0} \right).$$
158.
The plane $$x + 3y + 13 = 0$$ passes through the line of intersection of the planes $$2x - 8y + 4z = p$$ and $$3x - 5y + 4z + 10 = 0.$$ If the plane is perpendicular to the plane $$3x - y - 2z - 4 = 0,$$ then the value of $$p$$ is equal to :
A
$$2$$
B
$$5$$
C
$$9$$
D
$$3$$
Answer :
$$3$$
The required plane is
$$\left( {2 + 3\lambda } \right)x + \left( { - 8 - 5\lambda } \right)y + \left( {4 + 4\lambda } \right)z + P - 10\lambda = 0$$
Compare the coefficients with the plan. We get,
$$\eqalign{
& 4 + 4\lambda = 0 \Rightarrow \lambda = - 1 \cr
& x + 3y + 0z + 13 = 0 \cr} $$
Then we get $$p = 3.$$
159.
The co-ordinates of the points $$A$$ and $$B$$ are $$\left( {2,\,3,\,4} \right)$$ and $$\left( { - 2,\,5,\, - 4} \right)$$ respectively. If a point $$P$$ moves so that $$P{A^2} - P{B^2} = k$$ where $$k$$ is a constant, then the locus of $$P$$ is :
160.
The foot of the perpendicular from the point $$\left( {1,\,6,\,3} \right)$$ to the line $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$ is :
A
$$\left( {1,\,3,\,5} \right)$$
B
$$\left( { - 1,\, - 1,\, - 1} \right)$$
C
$$\left( {2,\,5,\,8} \right)$$
D
$$\left( { - 2,\, - 3,\, - 4} \right)$$
Answer :
$$\left( {1,\,3,\,5} \right)$$
Equation of line is $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$
Any point on this line is $$\left( {K,\,2K + 1,\,3K + 2} \right)$$
If this is the foot of perpendicular from $$\left( {1,\,6,\,3} \right)$$ then $$d.r$$ of this perpendicular are $$\left\langle {K - 1,\,2K - 5,\,3K - 1} \right\rangle $$
Now, using Condition of perpendicularity we have
$$\eqalign{
& \left( {K - 1} \right)1 + \left( {2K - 5} \right)2 + \left( {3K - 1} \right)3 = 0 \cr
& \Rightarrow K - 1 + 4K - 10 + 9K - 3 = 0 \cr
& \Rightarrow K = 1 \cr} $$
Hence, Required foot of perpendicular is $$\left( {1,\,3,\,5} \right)$$